ISO TC 198 Sterilization of health care products
Revising ISO 13408 aseptic processing standards
to reflect best practice

Karen Longstaff
Director, Microbiology Section
Laboratories Branch
Medical Devices and Product Quality Division, TGA

ISPE® Australasian Affiliate Seminars, Melbourne, VIC and Sydney, NSW
11 - 12 February 2020
ISO Technical Committee 198

Sterilization of health care products

- Develops international voluntary consensus standards specifying requirements for:
 - Cleaning, disinfecting, sterilising and aseptic processing of health care products (HCPs); and
 - Associated equipment and ancillary products used in ensuring effective application of these processes

- Published 54 standards/technical specifications (18 under development):
 - Applicable to industrial and health care facility processes

- 31 ‘P’ (participating) members (including Australia)

- 25 ‘O’ (observer) members

encompass medical devices (including IVDs), medicines and cellular based products
via Standards Australia
ISO TC 198: Working Groups

- 1: Ethylene oxide sterilization
- 2: Radiation sterilization
- 3: Moist heat sterilization
- 4: Biological indicators
- 5: Terminology
- 6: Chemical indicators
- 7: Packaging
- 8: Microbiological methods
- 9: Aseptic processing

- 10: Liquid chemical sterilization#
- 11: General criteria for sterilization processes and sterilizing equipment
- 12: Information for reprocessing of resterilizable devices
- 13: Washer-disinfectors
- 14: Dry heat sterilization#
- 15: Assurance of sterility
- 16: Vapourized hydrogen peroxide sterilization

Disbanded (no active work program)
ISO TC 198: Working Group 9

• Responsibility for developing and revising:
 – ISO 13408 *Aseptic processing of health care products* series of standards (Parts 1-7); and
 – ISO 18362 *Manufacture of cell-based health care products: Control of microbial risks during processing*:

• Members are technical specialists:
 – ~56 experts from 14 countries (product manufacturers, equipment manufacturers, regulatory and inspection bodies, consultants and testing laboratories)

• Committed to:
 – Closing gaps in current editions of these standards;
 – Revising standards to more accurately reflect current industry best practices; and
 – Not excluding future technologies or innovation
ISO 13408 Series

• Critical standards for aseptic processing of HCPs:
 – Used by industry, conformity assessment bodies and regulatory agencies to demonstrate satisfactory aseptic processing of HCPs:
 ▪ e.g. medical device - to deem compliance with Essential Principles
 – Can complement and provide additional guidance to Codes of GMP

• Acceptance of standards by industry and regulators:
 – Requires high level trust in standards to gain ‘international buy-in’
 – Sometimes need to steer between divergent views of different geographical areas to achieve consensus, e.g. PUPSIT
ISO 13408 Series

- Part 1: General requirements
- Part 2: Sterilizing filtration
- Part 3: Lyophilization
- Part 4: Clean-in-place technologies
- Part 5: Sterilization-in-place
- Part 6: Isolator systems
- Part 7: Alternative processes for medical devices and combination products
ISO 18362 *Manufacture of cell-based health care products: Control of microbial risks during processing:*

- Sterile products and ‘microbiologically controlled low bioburden products unlikely to cause harm in recipient’

- Limited ‘Amendment’ in progress:
 - Enable recognition as a joint ISO-EN standard
 - Delete normative reference to ISO 13485 from subclause 9.2.1 of ISO 18362
 - Avoids opening ISO 18362 to full technical revision ahead of scheduled 2021 systematic review
WG9: Current Work Program – ISO 13408

- ISO 13408-1 *Aseptic processing of health care products – Part 1: General requirements:*
 - Undertaking substantial technical revision of 2008 edition (‘parent’ standard) - DIS ballot due late 2020

 - Reconfirmed at 2019 systematic review (possible early revision 2020/2021 to address deficiencies)

- ISO 13408-6 *Aseptic processing of health care products – Part 6: Isolator systems*
 - Finalising significant technical revision of 2005 edition (FDIS ballot early 2020)

- Primary aims of revisions:
 - Promote acceptance and reliable implementation of QRM (including microbiological risk management)
 - Provide guidance for all types of aseptic processing
 - Recognise advances in sterile manufacturing technology and ‘future-orientate’ standards
ISO 13408-4:2005 Aseptic processing of health care products

Part 4: Clean-in-place-technologies
ISO 13408-4

• 2019 systematic review ballot:
 – 14 countries confirmed ‘as is’
 – 3 countries proposed ‘revise/amend’ (including Australia):
 ▪ Do we need a specific standard if requirements for clean-in-place are identical for aseptically processed and terminally sterilized product?
 ▪ Current edition is silent on biological contaminants

• Given WG9 workload:
 – Agreed to reconfirm ISO 13408-4 ‘as is’
 – Reconsider need for early revision 2020/21 prior to next scheduled SR
ISO 13408-6:2005 Aseptic processing of health care products

Part 6: Isolator systems
ISO 13408-6

• Major technical revision nearing completion:
 – Finalising for joint ISO-EN FDIS ballot early 2020

• Scope:
 – *Specifies the requirements for and provides guidance on the specification, selection, qualification, bio-decontamination, validation, operation and control of isolator systems related to aseptic processing of health care products and processing of cell based health care products*
 – Excludes restricted access barrier systems (RABS) and isolator systems for sterility testing or biosafety containment.
ISO 13408-1:2008 Aseptic processing of health care products

Part 1: General requirements

Deliberations of WG9 (not TGA or other party)
ISO 13408-1: Why Modernise/Revise?

• Need to modernise standard to recognise:
 – Different geographical regulatory approaches to aseptic processing
 – New approaches to aseptic processing that are transforming classical aseptic processing
 – Future improvements in aseptic processing rely on improved use of technology for existing and new products

• To reduce and control risk, revised standard focuses on important relationship between:
 – Risk-based process design
 – Microbiological contamination control
 – Risk management
ISO 13408-1: Why Modernise/Revise?

• Current edition skewed to traditional clean room processes:
 – Aseptic processing is broader than large scale vial filling in a clean room
 – Doesn’t encompass alternatives to traditional clean rooms
 – Doesn’t address both ends of the aseptic processing scale:
 ▪ manual processing in a cleanroom
 ▪ automated/robotic processes in isolator systems with no operator intervention
 – Doesn’t encourage higher end technologies for aseptic processing

• Revised Part 1:
 – What type of structure/format?
 ▪ identify critical, high level requirements for aseptic processing for normative sections
 ▪ ? annexes for specific topics, guidance and rationale for guidance
ISO 13408-1: Fundamentals

• Core risks for aseptic processing:
 – Non-viable particulates (NVP)
 – Microbiological contamination

• Cornerstones for aseptic processing:
 – Risk-based process design
 – Microbiological contamination control
 – Risk management

• Risk-based process design:
 – How we design a process for a product
 – Microbiological contamination control strategy is an input to risk-based process design
 – Output from process design is ‘validation starting point’ to demonstrate process effectiveness
ISO 13408-1: Fundamentals

• Requirement for product to be supplied sterile to be identified as input to process design and development

• Sterile product to be terminally sterilised wherever possible in preference to aseptic processing

• Rationale to select aseptic processing to be documented:
 – Include strategies investigated to overcome detrimental effects on product of terminal sterilisation
 – Include cogent reasons to support the selection of aseptic processing
 – When product:
 ▪ Contains a material or substance incompatible with terminal sterilisation
 ▪ Or is manufactured traditionally by aseptic processing, e.g. some ophthalmic preparations
 additional justification to support selection of aseptic processing is not necessary.
ISO 13408-1: Examples of challenges

• Advanced aseptic processing technologies:
 – Show cause for not adopting barrier technology in preference to conventional clean room
 – Should we reward adoption of advanced aseptic processing technologies and continuous monitoring?
 ▪ ? reduced sampling where technologies provide greater assurance of sterility and patient safety

• Monitoring of isolator systems:
 – Is it valid to require installation of active air sampling locations in an isolator based on accepted locations for a conventional clean room?
 ▪ ? ‘punishment’ for investing in advanced technologies rather than reward
 ▪ ? demotivate adoption of advanced technologies
 ▪ ? consider a risk-based approach to selecting locations rather than a specific number of locations per defined area of isolator
ISO 13408-1: Examples of challenges

• Monitoring of isolator systems:

 – Validated bio-decontamination process and 12 months environmental monitoring data showing no growth:
 • Is environmental monitoring still necessary?

 – Dilemma:
 • Probable scientific justification to suggest ‘no’
 • Codes of GMP require environmental monitoring

 – Is there a compromise?:
 • Is it feasible to:
 – Reduce the level of monitoring in comparison to clean room requirements?
 – Omit settle plates but retain active sampling?
ISO 13408-1: Examples of challenges

- Disinfection:
 - ISO 11139:2018 definition: *a process to inactivate microorganisms to a level previously specified as being appropriate for a defined purpose*

- Problematic for application of *disinfection* in aseptic processing:
 - Microbiocidal activity of *disinfectant* validated
 - *Disinfection process* not validated
 - No specification to quantify log reduction of microorganisms on clean room surface via disinfection
 - Monitor its efficacy via environmental monitoring

- Disinfection can be ‘cleaning’:
 - e.g. isolator systems - disinfectant use prior to validated bio-decontamination process

- Include Note to definition to manage problem
ISO 13408-1: Examples of challenges

• Process simulation (media fills):
 - Demonstrate suitability of process/line
 - Should we design on a case by case basis rather than one-size-fits-all ‘clean room’ approach?:
 ▪ manual clean room process – ? more onerous requirements (potential for more interventions)
 ▪ robotic system in an isolator – ? less onerous requirements than for clean room
 - After successful initial media fill qualification:
 ▪ is 6 monthly requalification necessary for all processes?
 ▪ is reduced frequency possible?
 • e.g. can we adopt risk management approach for processes with continual monitoring/verification for each product batch?
ISO 13408-1: Examples of challenges

• Periodic process simulation (media fills):
 – Should the nature of the process and type of monitoring determine frequency of periodic media fills?
 ▪ controlling entrainment of organisms into a closed system:
 • does this mitigate the need for periodic media fills or reduced frequency?
 – Does continuous monitoring of NVPs and viable particulates provide more information about process than 6 monthly media fills, especially when operators are not present in aseptic processing area?
 ▪ can monitoring identify an out-of-specification quickly?
 ▪ if yes, process hasn’t been ‘running in the dark’ for 6 months
 ▪ does a periodic media fill add value?
 ▪ are other controls and monitoring feasible options?
ISO 13408-1: Examples of challenges

• Product release:
 – Need assurance of sterility to have confidence in patient safety
 – Can’t measure ‘sterility’:
 ▪ need to demonstrate sterility but can’t measure ‘what isn’t there’
 – Can efforts in risk-based process design, microbiological contamination control and risk management justify parametric/real-time release for some aseptic processes?
 ▪ e.g. continuously monitored robotic line within an isolator system