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Abstract

Ocular fundus imaging plays a key role in monitoring the
health status of the human eye. Currently, a large number of
imaging modalities allow the assessment and/or quantifica-
tion of ocular changes from a healthy status. This review fo-
cuses on the main digital fundus imaging modality, color
fundus photography, with a brief overview of complemen-
tary techniques, such as fluorescein angiography. While fo-
cusing on two-dimensional color fundus photography, the
authors address the evolution from nondigital to digital im-

aging and its impact on diagnosis: They also compare sev- -

eral studies performed along the transitional path of this
technology. Retinalimage processing and analysis, automat-
ed disease detection and identification of the stage of dia-
betic retinopathy (DR) are addressed as well. The authors
emphasize the problems of image segmentation, focusing
on the major landmark structures of the ocular fundus: the
vascular network, optic disk and the fovea. Several proposed
approaches for the automatic detection of signs of disease
onset and progression, such as microaneurysms, are sur-
veyed. A thorough comparison is conducted among differ-
ent studies with regard to the number of eyes/subjects, im-
aging modality, fundus camera used, field of view and image

resolution to identify the large variation in characteristics

from one study to another. Similarly, the main features of the
proposed classifications and algorithms for the automatic
detection of DR are compared, thereby addressing comput-
er-aided diagnosis and computer-aided detection for use in
screening programs, Copyright © 2011 S.Karger AG, Basel

Digital lmaging

The availability of digital cameras — from dedicated
photographic cameras to cell phones - has quickly de-
creased the use of film-based imaging. The development
of medical i magingtoo has undergone a rapid transition
in the same direction, one of enhancement.

Some im aging modalities, e.g. computed tomography,
scanning laser ophthalmoscopy (SLO) and optical coher-
ence tomography rely on digital imaging, in contrast to,
fundus photographyand fluorescein angiography which
appeared quuite early, do not.

The first photographic images of the ocular fundus
were obtain ed by theend of the 19th and the beginning
of the 20th centuries,and the concept of a fundus camera
datesback to that time [1]. Asstated in a recentreview [2]:
‘The primary role of ophthalmic imaging however, goes
well beyond documentation in its ability to aid in the di-
agnosis of a broad range of eye conditions’. Additional
continuous efforts have been made to achieve the best
possible furx dus images [3). .

This review focuses on digital imaging of the human
eye fundus and its impact on clinical use. It does not at-
tempt to provide an exhaustive description of all digital
imaging mo dalities with application to thehuiman ocular
fundus; instead, it concentrates primarily on fundus pho-
tography.

It establishes a link between traditional (analog/non-
digital) and digital imaging, and addresses intrinsic dif-
ferences, adwvantagesand disadvantages of each.
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Eye fundus imaging is useful to document its status
and to assess any changes from a healthy condition. Im-
aging may focus on the structure or on a particular func-
tional aspect of the retina (e.g. color fundus photography
or fluorescein angiography, respectively), or on a correla-
tion of the two [1, 4].

Besides the diagnosis of ocular diseases, retinal imag-
ingalso allows the detection, diagnosis and management
of hypertensive and cardiovascular diseases [1, 5]. The
importance of easy access to the retinal microcirculation
is clear: “The retinal microvasculature is unique in that it
is the only part of the human circulation that can be di-
rectly visualised non-invasively in vivo, readily photo-
graphed and subject to digital image analysis’ [6].

Thedifferentoptions for fundusimaging are manifold
(e.g. computed tomography, magnetic resonance imag-

- ing, ultrasound imaging, infrared thermography [7], hy-
perspectral imaging [8], color Doppler imaging [9], or
photoacoustic ophthalmoscopy [10] and blood flow mag-
netic resonance imaging [11] in the rat retina). We also
refer to red-free photography, color fundus photography,
stereofundus photography, SLO and angiography. These
modalities share 2D imaging of the ocular fundus in con-
trast to 3D imaging by optical coherence tomography [12,
13-17] or volumetric information from confocal SLO
(CSLO). Each modality provides specific structural (e.g.
color fundus photography) or functional information
(e.g. fluorescein angiography) on the ocular fundus. This
review only addresses 2D imaging.

Among the advantages of digital imaging are the ease
and speed of access to data (images) [18]; fast and exact
duplication, archiving and transmission [19-21), and im-
mediateaccess to the results. Theimaging procedure can
berepeated if the quality of theinitial result isinadequate
[20; 21]. Although film-based images can be digitized (to
compute macular pigment density distribution from two
different wavelength-based images [22] or to assess the
status of the optic. nerve [23]), immediate access to the
images is not possible, as it is necessary to develop the
film first. This delay prevents the photographer from ver-
ifying theresults and therefore correcting any problem in
the acquisition process, which can be easily achieved in
digital imaging at no additional cost.

Thedigitization of fundus photographs was addressed
by Cideciyan et al. [24], who proposed a nonlinear resto-
ration model incorporating four components: the eye, the
fundus camera, the film and the scanner. Scholl et al. [25]
found digitized images to be useful for grading age-relat-
ed maculopathy and age-related macular degeneration.
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Three advantages were enumerated in favor of digital
imaging [26]. First, °... digital imaging permits the pho-
tographer to judge instantly the quality of the captured
image, and to take better pictures if necessary’. Second,
... more timeis needed for mountingand identifying 35-
mm slides, which occupy substantial storage space and
have to be catalogued manually for retrieval’. Third, “...
the total costs per stored image are lower than for 35-mm
film, and damage to the environment is lower because of
the avoidance of chemical processing, which is necessary
for film-based photography’.

The ... easier access and improved ability to manipu-
late large volumes of data ... enable more innovative ap-
proaches ..., as in the case of the quantification of fluo-
rescein angiograms [27].

Because of easy transmission, digitalimagingisa clear
advantage for imaging in remote locations and popula-
tion screening [28-33] although the security of the infor-
mation can bea concern [34]. Images can be sent to read-
ing centers for manual or automatic screening [35]. In
fact, several groups worldwide are pursuing research to
find the best and most accurate automatic systems for
disease grading. In addition, research is also under way
in order to extract as much information as possible from
digital images to provide information on the structure
and function of the human retina and to improve knowl-
edge on the changes in the diseased retina at the earliest
possible stage. :

As stated in an editorial by Bressler [36]: ‘Findings
from new imaging techniques may not represent a sig-
nificant scientific advance if the new procedures have not
been shown to provide advantages that outweigh disad-

. vantages in comparison with existing technology’. This

important and obvious statement emphasizes the balance
between gains and losses in information and knowledge.
Thelarge differences in imageresolution (number of pix-
els) and its relationship to the field of view (FOV) in ocu-
lar fundusimages, as compared to film-based fundus im-
ages are of particular importance in this regard.

Even so, as Dhawan et al. [37] have noted, the role of
computerized medical imaging is clear: ‘Computerized
medical imaging and analysis methods using multiple
modalities have facilitated early diagnosis, treatment
evaluation, and therapeutic intervention in the clinical
management of critical diseases’. Research and develop-
ment in medical imaging, not restricted to the eye, have
been reviewed [38, 39].

Since color fundus photography and fluorescein angi-

" ography play a special role, a small introduction should

be made here.
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In color fundus photography, contrast filters are used
" to modify the spectral range of the illumination source.

In this way, the visibility of several structures can be en-

hanced. :

Red light is poorly absorbed by the retinal pigment
epithelium, thus revealing the choroid and the choroidal
pattern. Green light, however, is absorbed by blood and
reflected by the retinal pigment epithelium, providing a
good contrast for visualizing the retinal vascular net-
work, hemorrhages, drusen and exudates. Because of
these features, green (red-free) photographs are routinely
taken in addition to fluorescein angiograms. Moreover,
blue light allows for better imaging of anterior retinal lay-
ers. It is absorbed by blood and by the retinal pigment
epithelium, providing a dark background against which
top layers of the retina are imaged [2]. Elsner et al. [40]
and Fernandez et al. [41] have reported on the effects of
wavelength on human fundus imaging.

Based on this imaging modality, stereo imagingispar-
ticularly useful as it enhances the visual sense of depth.
Due to the metion (shifting) of the camera, beams from
the two images fall in opposite slopes of the cornea, en-
hancing the stereoscopic effect [2].

In addition, mydriatic and nonmydriatic fundus im-
ages offer differentadvantages. Cameras that can capture
images through small, nonmydriatic pupils are tailored
for the physiological dilation that occurs in a darkened
room. This feature makes them suitable for remote pri-
mary care units and for screening programs. In contrast,
mydriatic retinal photographs are significantly more sen-
sitive than nonmydriatic photographs [42]. Conversely,
mydriatic cameras can provide better fundus images but

require dilated pupils and are primarily used in ophthal-
mology clinics and research centers [2].

Film versus Digital Fundus Images

Digital imaging developed in the mid 1960s following
the space program of the National Aeronauticsand Space
Administration [43]. Its application to the medical field
led to the use of imaging modalities that were not avail-
able previously, such as computed tomography, ultra-

- sound imaging and magnetic resonance imaging.

A characteristic of digital images, in particular of ocu-
lar fundus images, is resolution. Resolution is normally
expressed as the number of pixels present in the image.
Although resolution correlates with the potential of the
image to capture details of the objects present in the FOV,
it does not convey information on image quality. To cap-
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ture small details, a ‘sufficient’ number of pixels is re-
quired and is expressed as pixel density. As summarized -
by Prasad and Roy [43]: “The number and density of pix-
els must be high enough to produce a faithful representa-
tion of the subject ....

Conventional 35-mm films contain silver elements
that are packed to a density equivalent to approximately
2,500 lines per inch, corresponding to a frame resolution

in a digital image of about 4,096 X 2,736 pixels [43]. The

recommended resolution (100 lines per millimeter) de-
pends on the film used and development process (1-100
cycles per millimeter for a response above 10% for a typ-
ical transparency film used for imaging diabetic retinop-
athy, DR [20]). In Fujichrome Velvia 100 films, resolution
ranges from 80 to 160 lines per millimeter (http://www.
fujifilm.com/, accessed May 13, 2011) depending on con-
trast. In this way, a link is established between the intrin-
sic resolution of a 35-mm film and the resolution of the
sensor used by a digital camera.

Nonetheless, the quantitation process is usually not
mentioned. Although the most common is 8 bits per col-
or channel, ie. 256 different levels per color channel in .
the saved images, 10 and 12 bits per channel are usually
available at the detector level [44].

Also, grainy films have been replaced by a charge-cou-
pled device (CCD), and seldom by a complementary met-
al oxide semiconductor [45). While digital cameras ini-
tially used only one CCD sensor, newer cameras use three
CCD sensors. Thisenhancement allows current cameras
to separate information that is generated for each of the
red-green-blue color channels for each pixel.

In this way, a digital (red-green-blue color) image with
a resolution similar to that of the film-based one should
be 4,096 X 2,736 X 3 bytes (33,619,968 bytes, i.e. about
32 megabytes), using 8-bit color channels only. On the
otherhand, according to Mead etal. [19], a digital image
of 1,300 X 1,300 pixels (for a 45° FOV fundus image) is
enough to detect microaneurysms.

Images of this resolution (4,069 X 2,736 pixels) pre-
sent two major problems. At the acquisition step, through
thetimerequiredin transmitting the image from the sen-

" sor (camera) to the computer. In the case of fluorescein

angiograms, it prevents sequences of images to be taken
in a short period of time, e.g. in documenting the filling
phase. Atthearchivingand transmission step, large hard-
disk computer space is needed in addition to long trans-
mission time through the network, e.g. to a reading cen-
ter, remote hard-disk drive or data warehouse.

Research has shown [46] that a resolution of 50 pixels
per degree may provide diagnostic power comparable to
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film-based images to detect DR. Thus, 2,500 pixels should
be required to produce a 50° FOV retinal image, which is
much higher than frequently found in the literature.
Evaluation of DR based on film usually makes use of a
small FOV. Two 30° FOV 35-mm stereoscopic images are
commonly used; these allow the assessment of lesions of
the retinal capillaries such as microaneurysms. In con-
trast, digital imaging of the human ocular fundus is usu-
ally performed over a larger FOV, with 45° 50° and 60°
FOV being common. In addition, digital fundus images
usually present lower resolution compared with film-
based images on top oflossy compression file formats [20].
Different fundus camera makers follow different paths
regarding these issues. Some produce large image files
(uncompressed) and then compress them using alossless
compression, hence preserving all of the information on
the acquired image. Others use lossy compression tech-
niques, which reduce image files to a small fraction of
their original size, at the cost of losing information. In
either case, virtually all centers that apply digital ocular
fundusimaginguse amuch smallerimagesize for routine
purposes and larger images (resolution and image file
size) for research purposes.

To cope with digital images, standard protocols for ar-
chiving, communication and the like have been pro-
posed. The Picture Archiving and Communication Sys-
tem is an image-based information system for the acqui-
sition, storage, communication, archiving, display and

remote manipulation of medicalimages. The standard of

Digital Imaging and Communications in Medicine, orig-
inally developed for radiological images, is now used in
different areas of medical imaging [47]. ,
Table 1 summarizes the differences between several
studies in relation to digital versus nondigital ocular im-
aging. Clear differences are noticeable in the number of
eyes or patients used; the number of photographs per eye,
resolution, and FOV, and image type or compression. Sev-
enstudies do not mention the sensor type used. Five make
no reference to the image resolution (number of pixels),
and nine make no reference to the image file type used.

Influence on the Diagnosis

Several studies on ocular fundus photography have es-
tablished the gains and losses in diagnosis and screening
feasibility with the transition from film-based imaging to
digital imaging.

Henricsson et al. [48] compared the performance of
digital images with slides in detecting and grading DR.
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Digital color and red-free images-and 35-mm slides were
obtained using the Topcon Imagenet System 1.53 system
and Topcon TRC-50 VT funduscamera, Kodachrome 64
color film system, respectively. They obtained 50° FOV
images of 640 X 480 pixels in true color and 50° FOV
color 35-mm film slides. Exact agreement was found be-
tween grading obtained from color slides and digital col-
orimagesin 82% of the cases. Exact agreement increased
to 85% when red-free images were used as an adjunct to
digital color images. Henricsson etal. reported that ‘Good
to excellent agreement was found between the grading
of colour slides and digital colour images’, although the
‘... tendency [was] towards undergrading of the digital
colourimages ....

In a study by Liesenfeld et al. [28], images from 129
patients with diabetes were screened for DR by slit lamp
examination using two-field 50° FOV nonstereo digital
fundus photographs and 35-mm transparencies of the
same field. The authors concluded that ‘Telescreening for
diabetic retinopathy by an assessment of two-field 50°
non-stereo digital images is a valid screening method’. In
addition, in contrast to 35-mm transparencies, no d igital
images were lost. ,

Lim et al. [18] compared digitalimages through undi-
lated pupils with 35-mm §lide images through dilated pu-
pils for the detection of DR. A modified Canon CR6-
45NM camera equipped with a Sony DXC-970 MD digital
camerawasused to obtain 45° FOV digital images. Image
resolution was 640 X 480pixels. The 35-mm film fundus
images were obtained through dilated pupils using a
Zeiss 30° fundus camera. The authors concluded that
‘Nonmydriatic digital fundus imaging for detection of
diabetic retinopathy has a low sensitivityrate and a high
specificity rate and is less clinically useful than standard
dilated 35-mm fundus slide images’.

One year later, a study with similar conditions was
published by Bursell et al. [49], who evaluated the ability
to determine clinical severity of DR, the timing of the
next retinal evaluation and the necessity of referral to an
ophthalmologist by comparing stereoscopic nonmydri-
atic digital-video color retinal images to Early Treatment
Diabetic Retinopathy Study (ETDRS) standard seven-
field 35-mm stereoscopic color fundus photographs.
Their conclusion was slightly different. These authors
found ‘substantial agreement (x = 0.65)" for DR assess-
ment and ‘excellent (k = 0.87) agreement for suggested
referral to an ophthalmologist. Digital images (45° FOV)
were 640 X 480 pixels in size and true color (24 bits ~
8 bits per color channel). In addition, compressed Joint
Photographic Experts Group (JPEG) images were pro-

Bernardes/Serranho/Lobo



Table 1. Digital versus nondigital ocular imaging

1x C Topcon

Sony DXC 50°

7-field 35-mm

Topcon

Good to excellent

Henricsson - 640 x 480 50°
etal. [48] (279) and  ‘Imagenet 930 and and color (ETDRS) TRC-50 VT agreement for detection
2000 1X RF System 50° 640 x 480 M (Kodachrome and grading of DR
1.53 : 64 ASA) RF as adjunct modality
. seems to facilitate the
detection of DR lesions
Liesenfeld - 2 X NS Topcon 50° 768 X 576 Slit lamp Topcon TRC 50°  Nonstereo digital images
etal. [28] (129) M TRC 50X ‘biomicroscopy 50X (Kodak are a valid screening
2000 “and Ektachrome method for DR
2X NS35-mm 100 ASA)
slide images
Limetal. 40 3x Canon Sony DXC 45° 640X 480 35-mum slide Zeiss 30°  Nonmydriatic digital
[18] (22) NM CR6- 970MD images (Kodak images are less clinically
2000 45NM M Ektachrome 64 useful for detection of
ASA) DR
Bursellet 108 . 3Xx Topcon  Sony970- 45° 640 X 480 Com-  7-field 35-mm  Zeiss FF4 30°  Value of the
al. [49] (54) NM TRCNW- MD pressed ST color (Kodachrome nonmydriatic digital
2001 ST 5S. JPEG (ETDRS) 64 ASA) imaging for the
(10:1) M determination of clinical
DR
Razvietal. 400 M Canon Sony 45° Com-  Direct Advantage of combining
[50] (200) 45NM HAD pressed ophthalmoscopy digital imaging and
2002 3CCD JPEG ophthalmoscopy in eye
i screening
Rudnisky 207 M Zeiss Kodak/ 30° 3,040%2,008 Uncom- Contactlens High-resolution
etal. [44] (105) ST FF450 Canon pressed biomicroscopy stereoscopic digital
2002 DCS560 TIFF imaging biomicroscopy
is both sensitive and
specific for diagnosis of
clinically significant
macularedema
Herbertet 288 1x Topcon  Sony3-  45° 800 X 600 Com-  Slit lamp bio- Single-digital fundal
‘al. [51] (145) NM TRC " Chip pressed microscopy image is insufficient for
2003 : NWS5-§ JPEG screening purposes
Leeuwen 137 M Topcon Sony 35° ~800 X 600 Uncom- 35-mm slide Topcon TRC- 35°  Digitalimages are as
etal [26] (91) ST TRC-50EX HAD pressed images 50EX (Kodak good as 35-mm film for
2003 © 3CCD TIFF M Ektachrome grading of age-related
64 ASA) maculopathy i
Massinet 147 5% Topcon  Sony 45° 800 x 600 7-field 35-mm  Canon CF 30° Nonmydriatic digital
al, [52] (74) NM TRC- DXC-950 ST color 60UV images are suitable for
2003 NWe6S P (ETDRS) DR screening
Sabtietal. 92 . Canon CF 30° Digital images provide
[53]2003 (51) 60UV and an efficient method for
60° diagnosing and
' classifying sight-
threatening DR,
particularly proliferative
DR

Digital Ocular Fundus Imaging:

A Review
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Table 1 (continued)

Lawrence - 1x Topcon 45° 640 x 480 7-field 35-mm  Topcon TRC- 30°  The 800 X 600 digital
{54]2004 (151) NM  TRC- and and STcolor ~ 50VT image system is an
and 3x M NWS5SE 45° 800 x 600 (ETDRS) accurate method of
- and : detecting DR, provided
(103) Topcon there is adequate
TRC-NW6S pupillary dilation and
three retinalimages are
taken
Pirbhaiet 223 M Topcon 1,024 x 1,024 Fluorescein Digital images for
al, (55] (118) | NS TRC 50IX angiography screening exudative
2005 ' AMD were highly
sensitive, specific, and
showed high positive
predictive and negative
predictive value in
confirming or excluding
the presence of
neovascularization
Saarietal. 108 2x C Topcon 50° 768 X 576 Modified ETDRS Digital 50° RF and 2 X
[29] 2004 (70) M TRC50IA and and : classification 45° or 50° digital color
© and 50° 1,320 x 1,032 images are suitable for
1X RF . DR screening
M : The hand-held camera
2x C Canon 45° 2,160 x 1,440 (MediTell) does not
M CR6-45NM fulfill the needs for DR
MediTell 20° 768 x 576 JPEG screening
Schiffman 222 15 DigiScope 55° 930 diagonal Com-  7-field 35-mm ST 30°  System may be useful to
etal. [56] (111) fields ) . to pixels (19°)  pressed color (ETDRS) . screen for DR
2005 60° JPEG
) ’ 2000
(9:1to
15:1)
Somaniet 203 3x C Topcon Nikon 45° 3,008 x Com- 3x C35-mm ZeissPF450  30°  Good correlation for the
al. [57] (103) M TRC- D100 2,000 pressed film slide (Kodak : identification of
2005 ST NWeS JPEG MST Ektachrome) moderate to advanced
. (16:1) AMD
Chun etal. 231 1x C Canon Sony 45° 800 x 480 Com-  Slitlamp A single 45°,
[58]2007 (1200 NM  CRé6- DXC390 pressed biomicroscopy nonmydriatic, digital
45NM 3CCD’ JPEG  and indirect . image is not reliable as
(7:1) ophthalmoscopy the sole modality for DR
M . . screening :
Lopez- 1,546  2x Topcon 30° : Slitlamp - Nonmydriatic camera is
Bastidaet (773) NM  TRC-NW6S and biomicroscopy - an effective option in
al: [59) 45° and indirect community based
2007 ophthalmoscopy screening programs for
M DR
Hubbard 605 <several> <several> 30° (1) Com-  Digitized color <several> - In AREDS?2, the best
etal [60] (0) pressed slidefilms =~ (Kodak digital images matched
2008 JPEG  (2) Ektachrome the best film
(20:1) 100 ASA) '

C = Color; RF = red-free; ST = stereo; NS = non-stereo; M = mydriatic; NM = nonmydriatic.
(1) Images were received in different resolutions, but all were saved as compressed ] PEG with a resolution of 2,912 X 2,480 pixels. (2) Slide films were

digitized at 3,400 X 2,300 pixel resolution.
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duced. They also concluded that “This image validation
study demonstrates the value of the JVN [Joslin Vision
Network] system for nonmydriatic electronic retinal im-
aging and the determination of clinical diabetic retinop-
athy compared with gold standard ETDRS seven stan-
dard field 35-mm stereoscopic color 30° fundus photog-
raphy’. '

Leeuwen et al..[26] compared the quality and reliabil-
ity of grading age-related maculopathy in 137 eyes of 91
patients using stereo digital images and stereo 35-mm
color transparencies. Both 35-mm film and digital im-
ages of 35° FOV were obtained with a Topcon TRC-50EX
fundus camera equipped with a Sony HAD 3CCD color
video camera. Digital image resolution was 800 X 600
pixels. The authors concluded that digital images were as
good as 35-mm film for grading age-related maculopa-
thy.
Similarly, Massin et al [52] compared the results of

fundus photography through a nonmydriatic digital
camera with results of ETDRS retinal photographs for the
detection of DR. Forty-five-degree color fundus photo-
graphs of the eyes (147 eyes) of 74 patients were taken us-
ing a Topcon nonmydriatic camera without pupil dila-
tion (Sony 3CCD DXC-950P digital camera). Digital im-
ages were captured at 800 X 600 pixel resolution in true
color (24 bits). ETDRS 35-mm color slides were taken
with a Canon CF 60 UV camera and were used as refer-
ence images for the detection of DR. Massin et al. con-
cluded that .. photographs taken by the Topcon TRC-
NW&6S non-mydriatic camera, without pupillary dilation,
are suitable for DR screening’.

Lawrence [54] evaluated the accuracy of two digital
imaging systems, with two different resolutions, in de-
tecting DR. A group of patients (n = 151) wasimaged with
a 640 X 480 pixel resolution (45° FOV) while another
group of patients (n = 103) was imaged with an 800 X 600
pixel resolution (45° FOV), in addition to the seven-field
ETDRS (used as gold standard). The author concluded
that the 800 X 600 resolution system *.. offers an accu-
rate method of detecting diabetic retinopathy, provided
there is adequate pupillary dilation and three retinal im-
ages are taken’.

In the work of Saari et al. [29], three digital fundus
cameras were assessed for DR screening. Digital color im-
ages and red-free retinal images were obtained with a
Topcon TRC 50IA, a Canon CR6-45NM and a Meditell
(a hand-held digital color video camera) in 70 patients

with diabetes and control subjects. A total of 427 images
were evaluated. Mydriatic ophthalmoscopy and color
and red-free images were taken as reference standards.

Digital Ocular Fundus Imaging:
A Review

For all types of digital imaging, the pupils were dilated.
Two-color 50° FOV images of 768 X 575 pixel resolution,
one red-free image and one black-and-white image of
1,320 X 1,032 pixel resolution were obtained with a Top-
con TRC-50IA camera. Two 45° FOV color images of
2,160 X 1,440 pixel resolution were obtained with a Can-
on CR6-NM fundus camera. The hand-held digital video
camera was used to capture 20° FOV color images of 768
X 576 pixelsthat were saved as JPEG images. According
to the authors, one digital 50° red-free and two 50° or 45°
color images are suitable for DR screening. The hand-
held digital video camera, however, did not achieve this
goal.

The DigiScope system, which was developed to be
used in primary-care physicians’ offices, was presented
by Zeimer et al. [46]. Schiffman etal. [56] used the Digi-
Scope to compare digital retinal imaging obtained with
seven-field color fundus photography for the detection of
DR. Images from the DigiScope were used in the JPEG
2000 image file format with a compression ratio of 9:1 to
15:1. In this study, 15 slightly overlapping fields provided
a 55-60° FOV centered on the maculae of 222 eyes (111
patients); each of the 15 fields corresponded to 930 diago-
nal pixels for a 19° FOV [46]. The agreement found be-
tween the DigiScope and the seven-field photography * ...
indicates that the DigiScope may be useful to screen for-
diabetic retinopathy’.

A total of 203 eyes of 103 patients with a diagnosis of
age-related macular degeneration (AMD) were enrolled
in the study of Somani et al. [57], who compared the sen-
sitivity and specificity of stereoscopic digital photogra-
phy of the dilated pupil with a 45° FOV nonmydriatic
camera with those of 35-mm slide film photography in
the identification of AMD. Digital images were saved as
compressed JPEG image files. Images obtained were also
of 45° FOV with a nonmydriatic fundus camera (Topcon
TRC-NWE6S equipped with a digital camera Nikon D100
of 3,008 X 2,000 pixel resolution). Captured tag image
file format (TIFF) files of 17.2 megabytes (of true color)
were thereafter compressed to JPEG images of 1.1-mega-
byte file size. Stereoscopic images were viewed through
liquid crystal display shutter glasses on a 21-in monitor of
1,024 X 768 pixels, i.e. at a lower resolution than the im-
age acquired. On the other hand, a Zeiss FF450 fundus
camera using Ektachrome Kodak film slides was used to
obtain 30° film photographs of the optic disk and macu-
la. The results of the study allowed the authors to con-
clude that ‘High-resolution stereoscopic, mydriatic, 45°
digital images captured with a nonmydriatic camera and
JPEG compressed correlate well with stereoscopic slide

Ophthalmologica 2011;226:161-181
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film photographs in the identification of moderate to ad-
vanced AMD (AREDS level 3a or greater)’. Although a
good correlation was found, it was observed only for
moderate to advanced AMD stages.

Hubbard et al. [60] analyzed the brightness, contrast
and color balance of digital versus film retinal images to
propose a model tailored for the evaluation of AMD.
They considered 3-megapixel systems, at 30° FOV, as ac-
ceptable to image AMD retinas where °... drusen as small
as 32 wm diameter ..." can be found although resolutions
over a 6-megapixel system are preferred [60]. They con-
cluded that ‘In AREDS2, the best digital images matched
the best film. Overall, however, digital provided lower
contrast of retinal detail’. .

Apart from the work done by Liesenfeld et al. [28], ad-
ditional comparisons between digital imaging and other
diagnostic techniques of direct observation performed
during the last decade were analyzed.

Razvi et al. [50] reported on the advantage of combin-
ing digital imaging and ophthalmoscopy in eye screen-
ing. They found that this combination was superior to
either digital imaging or ophthalmoscopy alone in de-
tecting DR. Using a standard 45° FOV Canon 45NM ret-
inal camera equipped with a Sony HAD 3CCD color vid-
eo camera, they imaged 400 eyes of 200 patients with type
1 or type 2 diabetes and found that ‘Screening systems
using digital imaging in which images are collected and
later viewed without patient present will miss the added

benefit of added ophthalmoscopy as highlighted in this

study’.

Aysimilar study, which was performed by Rudnisky et
al. [44], compared high-resolution stereoscopic digital
photography to contact lens biomicroscopy for the diag-
nosis of clinically significant macular edema (CSME). A
total of 207 eyes of 105 patients had complete data sets for
both diagnostic modalities. The digital images were eval-
uated (at least) 2 months thereafter by a masked grader.

Special care was taken in digital imaging acquisition
and .storage. A 30° FOV Zeiss FF450 fundus camera
equipped with a ‘Kodak/Canon DCS560’ digital camera,
a 6-megapixel digital camera (image resolution of 3,040
X 2,008 pixels) were used. In addition, images were saved
uncompressed (TIFF image file format), thus preserving
the information captured in 17.4-megabyte image files.
Images were later viewed using 3D viewing software on a
computer monitor with a screen resolution of 1,024 X
768 pixels only. This fact-was addressed by the authors in
the discussion. They concluded that ‘High-resolution ste-

reoscopic digital photography is both sensitive and spe-
cificwhen identifying CSMEand correlates-well with the
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accepted standard of contact lens biomicroscopy for the
diagnosis of CSME’.

Herbert et al. [51] compared the detection of DR in
digital images with slit lamp biomicroscopy. Digital im-
ages of 45° FOV were obtained using a Topcon TRC
NW5-Swith an 800 X 600 pixel Sony camera. The im-
ages were saved as JPEG images compressed with °.. loss
of quality, in this system estimated at 10%’. The authors
concluded that ‘... a single digital fundal image is insuf-
ficient for screening purposes’.

Sabti et al. [53] assessed the correlation between fun-
dus digital image and clinical examination. In addition,
they assessed the possibility of developing a screening
program for the early detection of sight-threatening DR
using a Canon CF 60 UV fundus camera. Fifty-one pa-
tients (92 eyes) were enrolled in this study. All patients
underwent digital fundus photography of 30° and 60°
FOV. The authors concluded that °... digital images pro-
vide an efficient method for diagnosing and classifying
sight-threatening DR, particularly proliferative diabetic
retinopathy (PDR)’. They also noted that “... agreement
between the digital fundus camera and clinical examina-
tion by an ophthalmologist for diabetic maculopathy de-
tection, though substantial statistically, was not very sat-
isfactory’.

Pirbhai et al. [55] evaluated mydriatic nonstereo digi-
tal coler fundus photographs as a screening tool for the
identification and classification of exudative AMD. A to-
talof 223 fundusimages were obtained from 118 patients.
Fundus photographs were taken at the time of fluores- -
cein angiography with a Topcon TRC 50IX at a resolution
0f 1,024 X 1,024 pixels. There was no information on the
sensor used. The authors stated in their conclusion that
‘As a screening tool in exudative AMD, digital color fun-
dus photographs were highly sensitive, specific, and
showed high positive predictive and negative predictive
value in confirming or excluding the presence of neovas-
cularization’. In addition, “Very few treatable lesions are
missed using telemedicine in age-related macular degen-
eration’.

The conclusions of Chun et al. [58] differed from those
of Saari et al. [29] and Lawrence [54]. Chun et al. aimed
‘... to evaluate a digital imaging system for diagnosing
and grading diabetic retinopathy (DR) and cystoid macu-
lar edema (CME)’. To this end, an ophthalmologist prac-
ticingata distance graded 231 nonmydriatic color fundus
images from 120 patients (45° FOV); the results were
compared with dilated ophthalmoscopy performed by a
retinal specialist. The level of agreement was ‘moderate’
(x = 0.44 and 0.60, respectively) for both DR and clini-
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cally significant macular edema. The authors therefore
concluded that ‘A single 45°, nonmydriatic, digital image
is not reliable as the sole modality for DR screening’. Nev-
ertheless, they suggested that the 0.38-megapixel (800 X
480 pixels) low-resolution camera might be partially re-
sponsible for the moderate agreement, and that °... digital
fundus image review may serve as a useful method to
screen for DR in patients w1th limited access to an oph-
thalmologist’.

In a study performed by Lopez-Bastida et al. [59], 773
patients (1,546 eyes) diagnosed with type 1 or type 2 dia-
betes underwentscreening for DR in a prospective obser-
vational study assessing the effectiveness of a nonmydri-
atic digital camera (45-30° FOV photographs) as com-
pared to the reference method for screening DR. Digital
images were obtained with a nonmydriatic digital retinal
camera Topcon TRC-NW6S, but there was no informa-
tion regarding image resolution. The authors.considered
... digital retinal imaging with a non-mydriatic camera
as an effective option in community-based screening
programmes for diabetic retinopathy’.

Asillustrated in this section, the use of digital imaging
versus film or direct imaging techniques was not readily
accepted for diagnosis and screening in ocular fundus
imaging. However, recent work with larger data sets and
at higher image resolution has shown that the feasibility
of digital imaging is comparable to that of film or direct
imaging techniques and offers more advantages in tele-
medicine and data storage.

It is noteworthy that, in contrast to anterior eye imag-

ining, the effect of digital image resolution and compres-~

sion was not studied for eye fundus imaging [61].

Retinal Image Processing and Analysis

In the above survey of digital versus nondigital imag-
ing, we focused on the relationship between the two tech-
niques and their potential impact on diagnosis according
to several studies. In this section, we survey computer-
aided detection (CAD) and associated procedures from
image improvement (e.g. correction of nonuniform illu-
mination) to structure segmentation (e.g. optic disk and
vascular network) and grading (e.g. DR grading). Image-
and information-processing techniques are required for
the quantitative analysis of imagesina CAD system [38],

a concept that applies to different medical fields. One as-
pect, in particular, needs mentioning: the distinction be-
tween CAD and computer-aided diagnosis (CADx). CAD
focuses on the detection and location of diseased areas

Digital Ocular Fundus Imaging:
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while CADx focuses on diagnostic classification or dis-
ease recognition [62]. Unfortunately, most papers do not
distinguish between them, and commonly use CAD for

" both meanings [e.g. ref. 63].

We have already mentioned that digital imaging en-
ables easy acquisition and transmission to reading cen-
ters. These digital images also need to be analyzed for
their ability to detect the presence of any signs of disease
and classify a retina as healthy or diseased (35, 64]. In ad-
dition, for images of diseased retinas, further analysis
may be required to grade the lesions according to dlsease
stage or type.

The large number of images being currently acquired
has the potential for overloading grading centers and in-
creasing costs. Therefore, any process that may facilitate
or automate grading tasks is of great interest. As stated by
Abramoff et al. [1], the main screening application fo-
cuses on the early detection of DR although screening
programs exist for the detection of glaucoma and AMD,
among others, and these screening programs generate a

. quite large number of digital images to deal with.

The large majority of systems rely on the identification
of ... red or dark and yellow or bright lesions within the
retina ...’ [65). On the other hand, venous caliber abnor-
malities, intraretinal microvascular abnormalities and
retinal neovascularization are difficult to detect, and
thus the detection rates are low [65].

The areas called ‘computer processing and analysis of
medical images’ are quite broad and range from image
acquisition and enhancement to compression and storage
(66]. Again, the number of papers and the different ap-
proaches taken for each of these subjects prevent a full
discussion of these topics here. Therefore, some represen-
tative papers have been selected to provide a global over-
view of this research area.

Automated Detection of DR

A computer-based image analysis and statistical clas-
sification was published by Ege et al. [67]. The authors
described atool for the automatic analysis of color fundus
digital images of 50° FOV with a resolution of 640 X 480
pixels from a three-CCD sensor camera. Thereafter, the
results were analyzed and classified by the authors, and
their performance was compared by three different clas-
sifiers: a Bayesian, a Mahalanobis and a K nearest neigh-
bor (KNN) classifier. Four abnormalities were consid-
ered: microaneurysms, hemorrhages, exudates and cot-
ton wool spots, for which the Mahalanobis distance

Ophthalmologica 2011;226:161-181 169

20



classifier yielded the best results, with sensitivities of 69,
83, 99 and 80%, respectively. ,

A method for the detection of microaneurysms in 50°
FOV red-free fundus images was presented by Hipwell et
al. [68]. Two red-free images were obtained per eye using
a Topcon TRC-50XT fundus camera, with an image reso-
lution of 1,024 X 1,024 pixels and an ‘approximate pixel
resolution of 13 um’. A sensitivity and specificity of 81
and 93%, respectively, were achieved in the detection of
images containing microaneurysms.

Walter et al. [69] presented a new algorithm for the
detection of exudates. They first located the optic disk
and identified exudates on the green channel of the color
fundus photograph. A sensitivity of 92.8% was achieved.

A quantitative index of diabetes was proposed by
Cheng and Huang [70] based on the fractal dimension of
the vascular distribution. The rationale was based on the
fact that the fractal dimension of the retinal vascular dis-
tribution of patients with severe diabetes appears to be
greater than that of a healthy retina.

Larsen etal. [71] evaluated the performance of the Ret-
inaLyze System (Retinalyze A/S, Hersholm, Denmark), a
system intended for the automatic detection of red lesions
in color fundus photographs. The system was able to cor-

rectly identify 90% of patients with retinopathy and 81%
of patients without retinopathy.

Another work from the same group [72] demonstrated
a specificity of 71% and a sensitivity of 96% in detecting
DRin alarger set of images.

~ Usheretal. [73] proposed a tool for DR screening from

digital color fundus photographs. 95% sensitivity was
achieved, with 46% specificity in detecting any retinopa-
thy. The software was able to identify microaneurysms,
hemorrhages, exudates, drusen, and other (unspecified)
lesions.

In a study by Lalonde et al. [74], the RetsoftPlus soft-

ware was evaluated as a tool for retinal image analysis.
This software was intended to be multipurpose; it includ-
ed the detection of microaneurysms and exudates, among
other functions, as well as image coregistration. The sys-
tem achieved a sensitivity of 90% and a specificity of75%
in detecting microaneurysms and a sensitivity of 100%
and a specificity of 87% in detecting exudates.

Liand Chutatape [75] used principal-componentanal-
ysis to detect the optic disk in color fundus images of the
human retina and a novel approach to detect exudates. In
addition, theauthorsused a fundus coordinate system to
provide a better description of features within the retinal
images.
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A method for the classification of red lesions (micro-
aneurysms and hemorrhages) from color fundus photo-
graphs of the human retina was presented by Niemeijer
et al. [76). In this work, a KNN classifier was applied to
classify lesions as red lesions, and the system achieved a
sensitivity of 100% and a specificity of 87%. The comput-
ing time per image was about 15 min.

A fully automated approach for the detection and clas-
sification of changes in a time series of color fundus im-
ages was described by Narasimha-Iyer et al. [77]. (A sur-
vey on image change detection algorithms can be found
in Radke et al. [78].) The authors applied a coregistration
process to compare changes in the appearance of the eye
fundus over time and a Bayesian detection and classifica-
tion algorithm to classify the differences. The system
achieved a performance 0of 99% correctly classified chang-
esona set of nonproliferative and proliferative DR fundus
images.

Quellec et al. [79] proposed a new scheme for the de-
tection of microaneurysms on color fundus photographs
and fluorescein angiograms. The method is based on
wavelet decomposition. The Haar wavelet provided the
best results, with a sensitivity of 88% and a specificity of
96%.

In the work of Singalavanija et al. [80], alarge series of
images from healthy retinas and retinas diagnosed with
DR was used to test a system capable of detecting the ret-
inal vascular network, optic disk and fovea. In addition,
the system was able to detect diabetic features such as
exudates, hemorrhages, microaneurysms and cotton
wool spots. The system achieved a sensitivity of 75% and
a specificity of 83%, respectively.

Larsen et al. [81] presented a retrospective cross-sec-
tional study using digitized 35-mm color fundus slides
from a set of patients referred to a DR screening clinic
for photocoagulation treatment. Two photographs were
used: one centered on the fovea and one centered on the
optic disk. The process automatically detected red and
brightlesions following detection of the vascular network
and the optic disk. The authors reported 100% sensitivity
in detecting any abnormality.

- Aninformation fusion system for DR computer-aided
detection/diagnosis was assessed by Niemeijer et al. [63].
While most systems focuson detecting a particular lesion.
type, the system studied by Niemeijer et al. aims at the
integration of complementary detection systems. The au-
thors concluded that a supervised fusion technique, ei-
ther alone or associated with a ‘likelihood distribution
normalization (PPDN)’, is ‘superior over other fusion
methods’ for the type of lesions considered [63], with a
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receiver operator characteristic area under the curve of
0.881. . :
Abramoffetal. [82] compared the performance of au-
tomated DR detection using two different algorithms on
a large scale (over 16,600 patient visits, two fundus im-
ages from each eye). In this work, the algorithm that won
the 2009 Retinopathy Online Challenge Competition
was compared with the algorithm in use, i.e. EyeCheck
[82]. The retinas of patients were imaged with nonmyd-
riatic digital retinal cameras (Topcon NW100, Topcon
NW200, or Canon CR5-45NM) at 18 different centers.
Different settings were used as well: 45° FOV with 640 X
480 pixels, 35° FOV with 768 X 576 pixels, 35° FOV with
1,792 X 1,184 pixels, and 35° FOV with 2,048 X 1,536
pixels. All images were JPEG compressed (at the mini-
mum compression setting available) and were resampled
t0640 X 640 pixels before processing, The results showed
that “... further improvements in detection performance
cannot be differentiated from best clinical practices, be-
cause the performance of competitive algorithm develop-
ment now has reached the human intrareader variability
limit’. It should be noted that these algorithms, as most of
the ones intended for this sort of application, were opti-
mized to recommend referral of patients with any form
of DR to an ophthalmologist, hence the excellent perfor-
mance achieved.

A prior study (2 years before) by the same group used
the same dataset [83]. In that study, the authors had con-
cluded that ‘Automated detection of diabetic retinopathy
using published algorithms cannot yet be recommended
for clinical practice’, demonstrating the fast pace in the
progression of the techniques to automatically detect DR
from eye fundus images.

Other noninvasive approaches to diagnose DR from
fundus photographs were evaluated in another study

(84], in which DR was detected by focusing on microan--.

eurysms and exudates (counting and location) in color
fundus images. The study was thus not tailored for isch-
emia.

In a recent paper, Quellec et al. [85] focused on the de-
tection of lesionsfrom retinal images, in particular in the
detection of microaneurysms (the first sign of DR) and
drusen (the hallmark of AMD). A set of optimal filters
representing the typical lesions to be detected in addition
to negative and positive lesion confounders was devel-
oped. Lesions were classified using a classifier (e.g. KNN
classifier), whereby a peiformance similar to previous
methods from the same group was achieved although

much faster (less than 1 s per image) [85].
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Table 2 summarizes thestudies performed and includ-
ed in this review. Of particular interest are the differenc-
es between the imaging modalities, the number of im-
ages per eye, and the differences in image resolution. Six
studies have not disclosed the FOV.

Automated Identification of DR Stages

Cheng et al. [70] reported on a method for the classi-
fication of patients with diabetes into four groups of DR:
normal, slight, medium and severe DR. In this study, 92
images were analyzed, from which 75 were used as train-
ing set. The authorsrelied on the fractal dimension of the
retinal vascular network in addition to ‘lacunarity’, a pa-
rameter that describes the characteristics of fractals hav-
ing the same dimension but different appearances. A set
of classification schemes was analyzed, such as the back-
propagation algorithm, the radial basis function net-
work, the genetic algorithms and the combination of
multiple classifiers on a voting scheme, which allowed
similar results to be achieved.

Later, Lee et al. [86] assessed a system to detect hem-
orrhages and microaneurysms, hard exudates and cot-
ton wool spots to classify retinas as mild, moderate and
severe nonproliferative DR (NPDR). The system was de-
signed for color fundus photographs taken at 45° FOV;
two per eye, one centered on the fovea and one centered
on the optic disk. Images were captured on film and
were digitized to produce images of 512 X 512 pixels.
Lee et al. proposed a classification according to the ab-
normalities detected: (1) no NPDR — no lesions detected;
(2) questionable NPDR - lesions automatically detected
are not definite; (3) early NPDR - at least one microan-
eurysm/hemorrhage but no hard exudates or cotton
wool spots; (4) moderate NPDR - microaneurysms/
hemorrhages and hard exudates or cotton wool spots
present, and (5) severe NPDF - presence of 20 or more
microaneurysms/hemorrhages in each 4 midperipheral
quadrants.

In the work of Yun et al. [87], 124 retinal images were
used: 29 from the normal group, 38 from the moderate
group, 18 from the severe group and 39 from the prolif-
erative group. Hemorrhages, microaneurysms and the
retinal vascular network were segmented using image-
processing techniques. A supervised learning technique
was applied using the backpropagation algorithm for
the training of artificial neural networks. The system
achieved a percentage of correctly classified cases of 73%
(moderate NPDR) to 100% (normal); the number of test
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Table 2. Automated disease detection based on digital ocular fundus imaging

Egeetal - Digital - 50° 640480 Microaneurysms . Bayesian
[67] 2000 -) ixC (3CCD) Hemorrhages/Exudates Mahalanobis
’ Cotton wool spots KNN
Hipwell et al. - Digital 50°  1,024x1,024 Microaneurysms
[68] 2000 -) 2x RE
Walter et al. 30 Digital Topcon TRC - 640 X 480 Exudates oD
[69] 2002 -) I1XC 50IA
(green channel) (Sony 3CCD)
Cheng and - Digitized (€Y I )] Vascular network Backprojection algorithm
Huang -) FA Radialbasis function
[70] 2003 network
Genetic algorithn1
Voting scheme
Larsen et al. 260 Digitized 60° (3) Redlesions
2003 [71] (137) C (microaneurysms and
) hemorrhages)
Larsenetal . 400 - Digitized 45° (4) Red lesions
[72] 2003 (200) C (microaneurysms and
hemorrhages)
Usher et al. - Digital Topcon 45° 570 x 570 Microaneurysms OD Neural network
[73] 2004 (1,273) IxC TRC-NW5S Hemorrhages/Exudates
(Sony) Drusen/Other
Lalonde et al. 46 Microaneurysms oD
[74] 2004 ) Exudates Macula
Li and Chutatape 89 1xC 512 x 512 Exudates oD
[75] 2004 =) (5) Fovea
Niemeijeretal.  50+50 1xC Topcon 45° 768 X 576  Red lesions KNN
[76] 2005 =) TRC-50 (microaneurysms and
(Canon CR5 hemorrhages)
3CCD) _
Narasimha-Iyer 22 Digitized Topcon TRC Differences between Vascular Bayesian
etal [77]2006 () 2x C 50IA image pairs network
OD, Fovea
Quellec etal. 995 CandFA 1,280 X 1,008 Microaneurysms
[79] 2006 -)
Singalavanijaet 600+300 1xC TopconTRC 50° 570 X 550 Microaneurysms Vascular
al. [80] 2006. =) 50IA Hemorrhages network
: Exudates ) oD
Cotton wool spots Fovea
Larsenetal. - Digitized Canon CF- 60°  (6) Red lesions Vascular
[81] 2007 (106) 2x C 60UV Bright lesions network, OD
Niemeijer etal. 15,000 Digital 7) (8) 9) Red lesions KNN
[63] 2009 (=) 4% C (microaneurysms and
hemorrhages)
Bright lesions

(exudates, cotton wool
spots and drusen)

C = Color; RF = red-free; FA = fluorescein angiography; OD = optic disk; (1) Apparent FOV of 50°. (2) FA digitized at 50-800 dpi. (3) Color film
digitized at 1,350 dpi to achieve an image resolution of 1,947 x 1,296 pixels. (4) Color film digitized at 1,350 dpi to achieve an image resolution of 1,448
X 1,296 pixels. (5) Several image sources were used. All imageswereresized to 512 X 512 pixels. (6) Color film digitized at 1,350 dpi. (7) Three cameras
used: Topcon NW 100, Topcon NW 200 and Canon CR5-45NM. (8) The FOV varied between 35° and 45°. (9) Image resolution ranged from 768 X 576

to 2,896 X 1,944 pixels.
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cases was about one half the number for the training of
artificial neural networks in each of the groups.
Acharya et al. [88] applied nonlinear features of the
high-order spectra to identify the different stages of DR.
Specifically, they proposed to identify mild nonprolifera-
tive retinopathy, moderate nonproliferative retinopathy,
severe nonproliferative retinopathy and proliferative ret-
inopathy, in addition to healthy cases. A set of 300 retinal
photographs (60 photographs of each DR level and 60
photographs of healthy retinas) were acquired using a
Zeiss fundus camera with an image resolution of 256 X
256 pixels. Images were corrected by histogram equaliza-
tion and features were extracted thereafter. A support
vector machine classification scheme was applied to clas-
sif y each photograph into one of the five different groups
using 40 images per group as a training set and the re-
maining 20 images per group as the test set. This pro-
_cessed scheme allowed for a correct classification of 82%
of the cases (average; range: 75-90%).

Approaches using fluorescein angiography were also
considered. For example, Reznicek et al. [89] character-
ized ischemic versus nonischemic retinas of DR patients
in vivo. ‘

Segmentation

The segmentation of structures is a fundamental step
in retinal image processing and analysis, and thus the
retinal vascular network is of paramount importance.
First, any change in the vascular network indicates the
onset or progression of retinal disorders. Second, im-
portant information is gained when associated findings
such as microaneurysms are detected. In this way, the
vascular network, optic disk, fovea, and microarieu-
rysms are presented as specific subtopics of the seg-
mented structure.

Segmentation refers to the process of identification
within the fundus image of the respective structure along
with its location and shape. Bartling et al. [90] manually
identified the location of the center of the macula and
four points on the optic disk border (defining the shortest
and longest diameter) to convert length measurement

from pixels to metric distance (e.g. pixels to micrometers)
to correct for differences in magnification. Thereafter,
they used this technique to measure optic disk parame-
ters from digital fundus photographs.

The importance of the retinal vascular network is
clearly expressed in the work of Liew et al. [91] as the link

between .. a range of retinal microvascular signs and
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both clinical and subclinical cerebrovascular, cardiovas-
cular, and metabolic outcomes’.

Similarly, Lin et al. [92] refer to the possibility of early
diagnosis of cardiovascular diseases based on measure-
ments of arterial vascular trees in the retina; the narrow-
ing of the arterial blood vessels in the retina is an indica-
tor of hypertension and atherosclerosis.

The problem of classifying retinal vessels into veins
and arteries following retinal vessel segmentation was
addressed by Rothaus et al. [93] with a semi-automated
process to propagate a user classification via a vascular
graph.

Vickerman et al. [94] proposed a method to quantify
vessel diameter, vessel density, vessel branch point den-
sity, vessel length- density and vessel area density using
fluorescein angiography and a semi-automated process
to compute arterial and venous trees, they demonstrated
that several factors (e.g. vascular endothelial growth fac-
tor 165) induce changes in the vascular pattern that are
important for the identification of the dominant molecu-
lar signaling. The application of this method to the inves-
tigation of branching patteérns of the arterial and venous
trees during the progression of DR can be found in the
work of Parsons-Wingerter et al. [95].

Alongthe lines of extracting information from the ret-
inal vascular network, the measurement of vessel width
within the human retina was addressed in the work of Xu
etal. [96] using a graph-based method. Fractal analysis is

used as well for analyzing the retinal vascular network
[97-99].

Moreover, segmentation of the vascular network has
applications in retinal montage and tracking [101-102]
although other approaches, not explicitly resorting to
vessels can be used, as shown, for instance, by Meijering
et al. [103]. o

Vascular Network

Bartsch et al. [104] reported on a method to compute
3D information on blood vessels in the living human eye.
Simultaneous fluorescein and indocyanine green angi-
ographieswere performed. The former method was used
to visualize the retinal circulation, while the latter meth-
od allowed visualization of the retina and choroidal ves-
sels in the posterior pole. A prototype CSLO (Heidelberg
Retina Angiograph) was used in this study to obtain an
image resolution of 256 X 256 pixels. Blind deconvolu-
tion was applied to the set of confocal images. Though
desirable,noreal3D vascularreconstruction wasachieved
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although a clear improvement on the axial resolutlon of
the system was obtained.

To determine vessel and nonvessel regions alonga ves-
sel profile, a fuzzy C-means clustering algorithm has
been applied [105]. According to the authors, the advan-
tages of this approach were a virtually parameter-free
process, the lack of an explicit model for the morphology
of the vessels, and no use of edge information.

A real-time system able to cope with resolition im-
ages of 1,024 X 1,024 pixels at a frame rate of 30 images
per second was proposed by Can et al. [106]. The core

tracingalgorithm was based on a set of six 2D correlation .

kernels. Seed points were automatically selected.

Another real-time system described by Solouma et al.
[107] was intended for real-time systems based on image
resolutions of 640 X 480 pixels from 50° FOV. Detection
of vessel boundaries was achieved using deformable
models. Disclosed performance resultswere in the order
of 300 ms of processing time.

A review on vessel extraction techniques by Kirbas
and Quek [108] provided a thorough overview of the
complexity of the task. These authors considered six
main categories: (1) pattern recognition techniques, (2)
model-based approaches, (3) tracking-based approaches,
(4) artificial intelligence-based approaches, (5) neural
network-based approaches, and (6) miscellaneous tube-
like object detection approaches’. Pattern recognition al-
gorithms were further divided into seven subcategories,
while model-based approaches were divided into four
subcategories. Even though many techniques were pre-
sented, the authors concluded that this was still a poten-
tial area for additional research. :

Jelinek et al. [109] characterized vessels in the vicinity
of the optic disk from color fundus photographs. Blood
vessels were therefore tracked from the optic diskbound-
ary using the 2D fitting of a ... physically inspired mod-
el to a local region of a vessel’. The segmented vascular

network was thereafter classified into arteries and veins
based on color and hue by means of a classification algo-
rithm.

Anzalone etal. [110] investigated a segmentation pro-
cess suited for implementation on a digital signal proces-

sor. This two-step approach was applied to red-free fun-

dus images (green channel of the red-green-blue color
image). The first step was devoted to vessel enhancement
and the second step produced a binary image based on
thresholding procedures. The system was able to process
10images of 400 X 400 pixels per second.

Although a rich body of literature exists on the extrac-
tion of tubular structures in medical images, little focus
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-hasbeen given tothe delineation of the vascular network

as a whole, including its tree structure [92]. To address
this problem, Linet al. improved on a previous vessel seg-
mentation algorithm and grouped extracted vessel seg-
ments based on a Kalman filter to ensure their continuity.

A supervised classification process for the segmenta-
tion of retinal vessels from fluorescein angiograms was
proposed by Vargas and Liatsis [111. This approach is
*... based on the eigenvalue decomposition of the Hessian
matrix and Fisher’s linear discriminant analysis’.

Xuetal. [96] described a method to segment both ves-
sel edges simultaneously using a graph-based approach.
An initial vascular network was required to build the
graph.

Another supervised method for blood vessel detection
was proposed [112] using a neural network to classify pix-
els from color fundus images of DRIVE [113] and STARE
[114] public databases.

Several authors have suggested various methodologies
to achieve the segmentation of the vascular network from’
fundus images. In a brief overview of gradient-based
methods, Lam and Yan [115] considered the divergence
of vector fields of the image, while other approaches used
the gradient co-occurrence matrix [116], the Hessian ma-
trix and clustering algorithms [117], or curvature-based
methods [118]. Apart from gradient-based algorithms,
several other techniques have been suggested: the use of
appropriate wavelet transforms [119, 120], contourlets
[121] or filters [122], region-growing methods [123] or de-
formable contours [124].

Furthermore, recently published work has distin-
guished arteries from veins. This is important, as it is ex-
pected that DR affects arteries and veins differently, de-
pending on disease stage [125]. A Bayesian classifier was
proposed [126], whereby the arteries, the veins, the fovea
and the retinal background were identified. In other
studies [127, 128], a local approach around the optic disk
was considered using color, contrast and anatomical fea-
tures. Li et al. [129] applied a piecewise Gaussian model
especially adapted to the central reflex of the vessels as a
filter on the image for the classification of retinal vessels.
Azegrouz and Trucco [130] presented an automated
tracking technique of the central retinal vein in retinal
images. In another study, two-feature extraction and
two-classification methods were compared to discrimi-
nate between arteries and veins based on support vector
machines and neural networks [131]. Rothaus et al. [93]
also introduced a method that uses a presegmented vas-
cular structure and propagates a user classification based
on the vascular graph to classify the entire structure.
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Moreover, Muramatsu et al. [132] developed a set of com-
puterized methods for the segmentation of retinal blood
vessels to identify major vessel segments and classify
them into arteries and veins.

Optic Disk

Two other retinal structures, the optic disk and the
fovea, have demonstrated changes [133] in the eye fundus,
and several research groups have concentrated on locat-
ing the optic disk within eye fundus images. It was noted
that two types of ‘segmentations’ could be found: seg-
mentations that only determine the location of the optic
disk, e.g. optic disk center or enclosing circle or ellipse,
and segmentations that compute the boundaries of the
optic disk.

Walter et al. [69] used the local gray level variation to
locate the opticdisk and the watershed transformation to
find its boundaries.

Foracchia et al. [134] described a method that is based
on the fact that major retinal vessels converge at the optic
disk, which thus controls the blood supply to the human
retina. They proposed a geometrical parametric model

based on previously segmented retinal vascular networks.
Because it does not specifically search for the optic disk
within the image, this process was able to iden#ify the lo-
cation of the optic disk even if it is outside of the FOV. .

Other authors [135] relied on the appearance of the

opticdisk to identifyitslocation within theocular fundus

image, .. usually appearing as a bright, approximately
circular region intersected by blood vessels’ although
these authors used the Hough transform, a well-known
image processing technique, to identify circular forms
withinan image, following gradient determination using
the Sobel differential operator. The opticdisksearch area
was previously restricted to the area of confluence of ma-
jor retinal vessels, similar to the approach used by Forac-
chia et al. [134]. Fleming et al. [135] also provided an ex-
tensive description of prior approaches in their report.
A similar (although simplified) approach wastaken by
Sekhar et al. [136] using the Hough transform following
morphological operations within the fundus image. -
Youssif et al. [137] proposed to locate the optic disk
“... based on matching the expected directional pattern of
the retinal blood vessels’. Vessels were initially segment-
ed, therefore providing vessel orientation in a method
similar to that used by Foracchia et al. [134]. The optic
disk was then located by the direction of the optic disk-
matched filter (model).

Digital Ocular Fundus Imaging:
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In addition to locating the optic disk, Welfer et al. [ 138]
determined optic disk boundaries. The initial location
(region of interest) was based on the main vessel arcade,
asin other reportscited here. In addition, a particular ap-
proach was used to place the main vessel arcade outside
of the retinal vascular network that was initially segment-
ed. Following optic disk segmentation, its boundaries
were computed based on' morphological mathematical
operators and the watershed transformation.

Luand Lim [139] applied a different approach to locate
the optic disk based on itsbrightappearancein color fun-
dus photographs. Using a set of concentric lines with dif-
ferent directions, they evaluated the image variation
along the multiple directions. The optic disk was thereaf-
ter located using the orientation of the line segment with
the maximum or minimum variation. This approach has
the major advantage of not requiring the retinal vascular
network to be segmented.

Segmentation of opticdiskboundaries based on active
contours was used in the work of Marrugo and Milldn
[140] following optic disk location based on ‘color math-
ematical morphology’.

Fovea

The fovea is a key feature of the ocular fundus. Any
changes in the appearance of the fundus gain extra im-
portance if they occur close to the fovea, where the pho-
toreceptors crucial to central vision are located. Thisim-
portanceis clearly demonstrated in the definition of clin-
ically significant macular edema, whose classification is
based on the distance between the center of the foveaand
the region of macular edema.

Because the fovea is very difficult to identify within
the ocular fundus image using an automated system, the
related body of research is smaller than for vascular net-
work and optic disk segmentation. The exact center of the
fovea is difficult to identify on color fundus photographs
even for a human grader. The task becomes easier on
high-definition fluorescein angiograms, which show the
foveal avascular zone.’

Ibafiez and Simé [141] applied Bayes1an statistical
methods to identify the location of the fovea on fluores-
cein angiograms. In addition, the contour of the fovea
was modeled using a unidimensional Markov chain. Two
algorithms were used to estimate the contour of the fovea:
simulated annealingand iterated conditional-mode algo-
rithms. This procedure waslater applied by Simé and de
Ves [126].

Ophthalmologica 2011;226:161-181 175



Fleminget al. [135] searched for the fovea using a tem-
plate. By computing the correlation coefficient between
the image and the template in a region of interest based
on the location of the optic disk and the major arcades,
they could reduce the number of potential false-positive
results. In addition, this region was also delimited based
on the distance to the center of the fovea and on the di-
mension of the optic disk previously estimated for the
same image.

Microaneurysms

Microaneurysms are the first visible sign of DR and
thusare important features that can be identified in fluo-
rescein angiograms (mostly) or color fundus photographs
(more recently) using automated methods.

Spencer et al. [142] used digitized fluorescein angio-
grams to develop a procedure for the automated detection
of microaneurysms using a set of matched filters. The
same research group improved their initial approach
(143] by applying a region-growing algorithm to delin-
eate each candidate microaneurysm, followed by the
analysis of size, shape and energy characteristics of each
candidate lesion.

A similar approach was proposed by Mendonga et al.
[144]. Fluorescein angiograms were preprocessed and en-

- hanced, and objects were then segmented. Final micro-
aneurysms were validated based on local intensity, con-
trast and shape.

Hipwell et al. [68] used red-free images. They prepro-
cessed digital ocular fundus images to correct intensity
variations in the background and enhance small round
features. The use of red-free images, a noninvasive imag-
ing modality, represents a major step towards the nonin-
vasive assessment of the eye fundus.

Similarly, microaneurysmsweredetected in color fun-
dus images of the human retina by Niemeijer et al. [76,
145]: this was the first step towards automated screening
for DR. In their earlier study[76], they referred to “red le-
sions”, including microaneurysms and hemorrhages; lat-
er on [145), they distinguished them by size: “This method
allowed for the detection of larger ‘red lesions’ (i.e. hem-

orrhages) in addition to the microaneurysms using the
same system’. ‘

The importance of identifying microaneurysms for
the correct assessment of DR and its progression was
stressed by Bernardes et al. [146] and Nunes et al. [147].
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Retinal Analysis: Global Importance

It has been suggested that information on theeye fun-
dus is important in a variety of diseases, including heart
diseases and stroke, hypertension, peripheral vascular
disease and DR [148]. Based on the studies of Can et al.
[106] and Catros and Mischler [149], Al-Diri et al. [148]
devised a ‘junction resolution algorithm’ thatforms a ret-
inal vascular graph from previously segmented retinal
vessels, therefore resolving the connectivity of the vascu-
lar network. This connectivity wasnot fully solved using
earlier segmentation algorithms of retinal vascular net-
works. Using self-organizing feature map, the algorithm
assigned segment ends to local sets based on position and
alignment, choosing the most plausible solution in terms
of geometry.

Other Imaging Modalities

Other digital imaging modalities of special interest to
ophthalmology (see Acharya et al. [7] and Alabboud etal.
(8] include fluorescein angiography [150], indocyanine
green angiography, fundus autofluorescence and multi-
focal electroretinography [151].

Fluorescein angiography is especially useful in the
management 6f DR and macular degeneration as it pro-
vides information on the retinal circulation and on the
statiis of the blood-retinal barrier. Developments based
on high-speed confocal scanning laser ophthalmoscopy
brought new insights into the onset and progression of
DR from its earliest to its most advanced stages [152—158].

In this imaging modality, sodium fluorescein is intra-
venously administered to the patient, and the passage of
fluorescein is registered throughout the retinal circula-
tion.

In contrast to fundus photography, fluorescein angi-
ography is not based on the reflection of light from the
eye fundus. Instead, a light beam of appropriate wave-
length is used to excite sodium fluorescein molecules that
emit light at a longer wavelength. The peaks wavelengths
of absorption and emission are 490 and 520 nm [150] or
490 and 510 nm [159], respectively.

Similarly, indocyanine green angiography [103, 160-
164] requires the administration of a dye, butitistailored
for imaging the choroidal circulation because of the
wavelength used. With peak wavelengths of absorption
and emission in the near-infrared (805 and 835 nm, re-
spectively), indocyanine green angiography allows great-
er transmission through the retinal pigment epithelium
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andblood than the visible wavelength used in fluorescein
angiography or color fundus photography [2].

Fundus autofluorescence [165-169] is similar to fluo-
rescein angiography but does not require administration
of a dye. It enables accumulation of lipofuscin, which is
produced by the oxidation of unsaturated fatty acids [21]
and can then be imaged in the retinal pigment epitheli-
um. Although the peak wavelengths of absorption and
emission are slightly different from those of sodium fluo-
rescein, the same set of filters can be applied.

Each of these techniques can take advantage of SLO
and CSLO techniques [170-173]. Instead of illuminating
and imaging the entire area simultaneously, the SLO
technique illuminates only a spot in the eye fundus. The
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