

Literature search and summaries of seven sunscreen active ingredients

Butyl methoxydibenzoylmethane (avobenzone), ethylhexyl triazone, homosalate, octocrylene, octyl methoxycinnamate (octinoxate), oxybenzone and phenylbenzimidazole sulfonic acid (PBSA)

4 February 2025

Copyright

© Commonwealth of Australia 2025

This work is copyright. You may reproduce the whole or part of this work in unaltered form for your own personal use or, if you are part of an organisation, for internal use within your organisation, but only if you or your organisation do not use the reproduction for any commercial purpose and retain this copyright notice and all disclaimer notices as part of that reproduction. Apart from rights to use as permitted by the *Copyright Act 1968* or allowed by this copyright notice, all other rights are reserved and you are not allowed to reproduce the whole or any part of this work in any way (electronic or otherwise) without first being given specific written permission from the Commonwealth to do so. Requests and inquiries concerning reproduction and rights are to be sent to the TGA Copyright Officer, Therapeutic Goods Administration, PO Box 100, Woden ACT 2606 or emailed to <tga.copyright@tga.gov.au>.

Contents

Executive summary	4
Introduction	4
What are these ingredients	5
Current restrictions in Australia and overseas	7
Literature search summary	8
Method of data search	8
Pharmacokinetics	9
Avobenzone -----	9
Ethylhexyl triazone -----	10
Homosalate -----	11
Octocrylene -----	11
Octinoxate -----	13
Oxybenzone -----	14
Phenylbenzimidazole sulfonic acid-----	14
Clinical trials	15
Toxicity	16
Acute toxicity -----	16
Local tolerance -----	17
Sensitisation -----	18
Repeat dose toxicity -----	18
Genotoxicity -----	26
Carcinogenicity -----	27
Reproductive and developmental studies -----	28
Endocrine activity modulation -----	32
Other studies -----	36
NOAEL and DA values for risk assessment-----	40
APPENDIX	41
Search strategy -----	41
BIBLIOGRAPHY	45

Executive summary

We have conducted a literature search investigating information relevant to the safety assessment of the following seven sunscreen active ingredients available for use in Australia:

- butyl methoxydibenzoylmethane (avobenzone)
- ethylhexyl triazone
- homosalate
- octocrylene
- octyl methoxycinnamate (octinoxate)
- oxybenzone
- phenylbenzimidazole sulfonic acid

The purpose of this review was to provide an overview of the publicly available safety information for these ingredients needed to assess their suitability for use in therapeutic sunscreens listed on the ARTG. The findings will inform the need for any risk management actions to ensure public safety.

These ingredients were prioritised for this targeted review based on the availability of nonclinical safety data to TGA, their reported use in a higher number of sunscreen products marketed in Australia, and safety signals reported overseas. The literature includes available national and international safety assessment reports and peer reviewed publications.

The two main issues considered in this review were the evidence for the ability of these ingredients to penetrate the skin to reach viable cells systemically, and the potential toxicity exerted by them.

Introduction

The [Therapeutic Goods \(Permissible Ingredients\) Determination \(No. 3\) 2024](#) currently lists 30 sunscreen active ingredients approved for use in Australia. The safety of these ingredients has been addressed by various means, including assessment of toxicological data, utilisation of overseas regulatory reports, and consideration by committees such as the then Medicines Evaluation Committee.

In 2019, the US FDA published a guidance for industry concerning safety and effectiveness data necessary to determine that a sunscreen active ingredient is generally recognized as safe and effective (GRASE) under the Sunscreen Innovation Act. This introduced a new requirement to conduct Maximal Usage Trials (MUsT) in order to study human absorption correlating to real-world use (FDA 2019a). This was followed by the publication of a US FDA proposed rule in 2019 elaborating the requirement for testing and labelling of sunscreens by manufacturers (FDA 2019b). The rule divided the 16 active ingredients approved in USA into three categories:

- category I (GRASE) includes ZnO and TiO₂;
- category II (not GRASE) includes trolamine salicylate and para-aminobenzoic acid (PABA) (neither of which is used in products currently marketed in Australia); and
- category III (additional data needed) includes the remaining 12 organic filters (cinoxate, dioxybenzone, ensulizole, homosalate, meradimate, octinoxate, octisalate, octocrylene, padimate O, sulisobenzone, oxybenzone, avobenzone; (FDA 2019b)). Ensulizole, homosalate, octinoxate, octisalate, octocrylene, oxybenzone, avobenzone are currently used in Australian products.

The US FDA has proposed that the category III ingredients are not GRASE, because the public record does not currently contain sufficient data to support positive GRASE determinations and additional data is required. The US FDA has also emphasised that they have not concluded that the

active ingredients proposed as non-GRASE are unsafe for use in sunscreens but have requested additional information to evaluate their GRASE status in light of changed conditions, including substantially increased sunscreen usage and evolving information about potential risks since their original evaluation. The US FDA has yet to publish their findings or final order and have noted they are reviewing these ingredients to determine if they are GRASE before they can establish a final order.

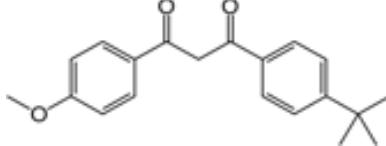
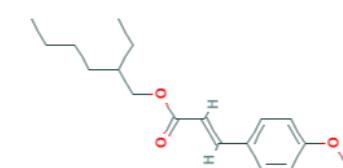
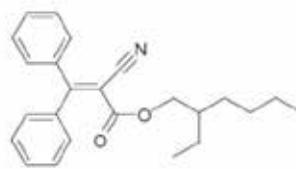
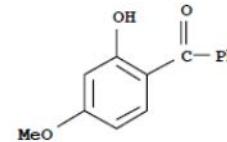
Given the greater use and importance of sunscreens in Australia; and the current interest by the US FDA in the ongoing safety of sunscreen active ingredients, the TGA has conducted an audit of its safety data holdings to better understand the safety profile of these ingredients.

As part of this audit, it was noted that some of the category III (additional data needed) organic filters have been widely used in sunscreen products in Australia. One of them was octisalate (octyl salicylate also known as ethylhexyl salicylate). Based on the available information, the Cosmetic Ingredient Review Expert Panel (Cosmetic Ingredient Review 2019) reached the conclusion that octisalate is safe when used in cosmetics in the European use settings and concentration (at 0.003% to 5% concentration as of 2018 data) described in the safety assessment when formulated to be non-irritating and non-sensitizing, which may be based on a quantitative risk assessment (QRA). As such, the literature review was not conducted for octisalate (octyl salicylate).

A literature search was conducted for the scientific information available for seven active ingredients avobenzone, ethylhexyl triazole (EHT), homosalate, octinoxate, octocrylene, oxybenzone and phenylbenzimidazole sulfonic acid (PBSA) for use in sunscreens. These ingredients have been widely used in sunscreen products in Australia. The review is intended to provide an overview of the publicly available safety information for these ingredients needed to assess the suitability of these ingredients for use in therapeutic sunscreens.

What are these ingredients

The chemical and physical properties and the molecular structures of these seven ingredients are provided in the following tables (Yap *et al.* 2017; Gilbert *et al.* 2013).





Table 0-1 chemical and physical properties of the active ingredients under review

Active ingredient (absorption spectrum)	CAS no.	Chemical name	Molecular formula	Physical properties				Other names
				Water solubility	MW g/mol	Density	Log Pow	
Avobenzone (BMMD or BMDBM) UVA	70356-09-1	1,3-Propanedione, 1-[4-(1,1-dimethylethyl)phenyl]-3-(4-methoxyphenyl)-	C ₂₀ H ₂₂ O ₃	0.01 mg/L	310.4	1.1±0.1 g/cm ³	4.5-6.1	Butyl methoxydibenzoyl methane, Eusolex® 020, Parsol® 1789, 4-tert-butyl-4'methoxydibenzoyl methane, BMDBM
Ethylhexyl triazole (EHT) UVB	88122-99-0	2,4,6-Trianiino-(p-carbo-2'-ethylhexyl-1'-oxy)-1,3,5-triazine	C ₄₈ H ₆₆ N ₆ O ₆	0.005 mg/L at 20°C	823.1	1.1±0.1 g/cm ³	15.5	Uvinul T150, (octyl triazole)
Homosalate UVB	118-56-9	3,3,5-trimethylcyclohexyl 2-hydroxybenzoate	C ₁₆ H ₂₂ O ₃	0.4 mg/L at 25°C	262.3	1.045 g/cm ³	4.7	Benzoic Acid, 2-Hydroxy-, 3,3,5-Trimethylcyclohexyl Ester Cyclohexanol,

Active ingredient (absorption spectrum)	CAS no.	Chemical name	Molecular formula	Physical properties				Other names
				Water solubility	MW g/mol	Density	Log Pow	
								3,3,5-trimethyl-, salicylate. Homomethyl salicylate Salicylic acid, 3,3,5-trimethylcyclohexyl ester Caswell No. 482B, Neo Heliopan® HMS, CCRIS 4885, Filtersol "A"
Octinoxate (OMC or EHMC) UVB	5466-77-3	2-Ethylhexyl 4-methoxycinnamate	C ₁₈ H ₂₆ O ₃	0.1 g/100 mL at 27°C	290.4	1.01 to 1.02 g/cm ³	5.9	EHMC or octyl-methoxycinnamate (OMC)
Octocrylene (OC) UVB	6197-30-4	2-Propenoic acid, 2-cyano-3,3-diphenyl-, 2-ethylhexyl ester	C ₂₄ H ₂₇ NO ₂	40 µg/L at 20 °C	361.5	1.051 g/mL	6.1	2-Cyano-3,3-diphenyl acrylic acid, 2-ethylhexyl ester, 2-Ethylhexyl-2-cyano-3,3 diphenylacrylate, K.SORB 1139, Octocrylene USP, Parsol 340, Sunkem OTC, Sunobel®23 OCT, Uvinul 3039, 24 UVINUL N 539 T
Oxybenzone (BP-3) UVB	131-57-7	2-benzoyl-5-methoxyphenol; 4-Methoxy-2-hydroxybenzophenone	C ₁₄ H ₁₂ O ₃	0.0037 g/L at 20°C	228.3	1.32 g/mL	>3.7	Benzophenone-3
Phenylbenzimidazole sulfonic acid (PBSA) UVB	27503-81-7	2-Phenylbenzimidazole-5-sulfonic acid	C ₁₃ H ₁₀ N ₂ O ₃ S	> 30%	274.3	1.5 g/cm ³	-1.1 at pH 5	Ensulizole, Benzimidazole, 2-phenyl, 5-sulfonic acid

*the active ingredients are referred to throughout the report as either their AAN, INN or the abbreviated names.

Table 0-1 Molecular structure of the active ingredients under review

Active ingredient	Structure
Avobenzone	
Ethylhexyl triazone	
Homosalate	
Octinoxate	
Octocrylene	
Oxybenzone	
Phenylbenzimidazole sulfonic acid	

Current restrictions in Australia and overseas

The following ingredients are currently approved in Australia for use as active ingredients in therapeutic sunscreens for dermal application (see the table below), not to be used in topical products for eyes, with appropriate safety warnings mandated on the label. It is noted that the regulation of

sunscreens differs internationally, for example the USA regulate these as OTC drugs while they are regulated as cosmetics in the EU.

Active ingredient	Maximum % approved				
	Australia	EU	USA	Canada ¹	Japan ²
Avobenzone	5	5	3	3	10
Ethylhexyl triazone [†]	5	5	Not approved	Not approved	5
Homosalate	15	7.34 (restricted to face product)	15	15	10 (restricted in all types of cosmetics)
Octinoxate	10	10	7.5	7.5	10
Octocrylene**	10	9 (propellant spray products); 10 (other products)	10	10	10 (restricted in all types of cosmetics)
Oxybenzone ^Δ	10	6 (for face /hand products, excluding propellant and pump spray products); 2.2 (for body products)	6	6	5 (cosmetics not used for mucosa and not to be washed away)
Phenylbenzimidazole sulfonic acid ^γ	4	8	4 (referred to as Ensulizole)	4	3 (cosmetics not used for mucosa and to be/not to be washed away)

**Octocrylene is approved as a UV filter in cosmetic formulation at ≤10% (as acid) in both Europe (Annex VI/10) and USA. The specific migration limit (SML) of octocrylene from food contact materials is 0.05 mg/kg (FDA 2018); European Parliament and the Council (2009); Restriction in EU - Benzophenone as an impurity and/or degradation product of Octocrylene shall be kept at trace level.

[†]EU: Annex VI, Regulation (EC) No. 1223/2009; ^γ EU: cosmetics directive in annex VII, part 1 list of permitted UV filters under entry 6;

^Δ Annex VI/4, oxybenzone is also allowed at concentrations of up to 0.5 % to protect product formulations in all other cosmetic products (Annex VI/4).

Literature search summary

Method of data search

The literature review was conducted using keywords such as the chemical name, Australian Approved Name (AAN) or the International Nomenclature Cosmetic Ingredient (INCI) names, and "sunscreen" as the search items. Publications during a 15-year period were searched (between 2008 and March 2023). See the Appendix 0 for details.

In summary, the following data sources have been used for the literature search:

- Assessments from national regulatory agencies (e.g., AICIS, previously known as NICNAS) where available.

¹ <http://webprod.hc-sc.gc.ca/nhpid-bdipsn/atReq.do?atid=sunscreen-ecransolaire&lang=eng>

² <https://www.mhlw.go.jp/english/dl/cosmetics.pdf>

- Opinions from the Scientific Committee on Consumer Safety (SCCS, previously known as SCCNFP/SCCP/SCC) where available.³
- Information identified through literature search in PubMed and on the internet where a newer SCCS is not available.
- The publicly available registration dossiers for the ingredients submitted by industry under the EU REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) Regulation and available on the website of the European Chemicals Agency (ECHA). This information includes unpublished study summaries submitted by industry, in response to the standard data requirements of the REACH Regulation. Data from key studies in the registration dossiers have been considered for assessment in this review.

Information on the health hazards is available for all the selected ingredients considered, although the amount of information available varies considerably and does not cover all toxicological endpoints for all ingredients. Endocrine activity modulation properties of ingredients may give rise to a concern for human health. The evaluation of endocrine activity modulation properties was described collectively. Of note, all articles dealing with environmental matters relating to the ingredients were excluded as they do not fall under Australian therapeutic goods legislation.

Pharmacokinetics

The main safety concerns for these active ingredients arise from the knowledge gap around the toxicokinetic and pharmacokinetics data. Cutaneous permeation is a critical parameter in the kinetics of these active ingredients. Although most organic UV filters are lipophilic, *in vitro* cell permeation studies were also conducted with some of these ingredients to demonstrate systemic absorption by intact skin. Dermal absorption data from either relevant SCCS opinion, ECHA dossiers, AICIS assessments or published literature were reviewed in this document. Limited permeation data were noted for some active ingredients. In the absence of dermal toxicity data, oral toxicity data were considered when considering systemic toxicity in the worst-case scenario. Where appropriate, the dermal absorption value from the most recent SCCS opinions for the relevant active ingredients, were noted. Note that dermal absorption values apply to intact skin and may not be applicable for abraded skin or areas of sensitive skin e.g. lips.

Avobenzone

The molecular weight of avobenzone is in the range (MW < 500 D) where skin penetration can occur but the log P_{ow} is slightly above the range favouring penetration (log P_{ow} in range -1 to +4). Avobenzone has a low water solubility. Based on these physico-chemical data, only low dermal penetration is expected.

The toxicokinetic data for avobenzone were assessed in ECHA 2021 (ECHA 2021A). The executive summary of the assessed data is given below (for details see ECHA 2021A).

- In a 21 day dermal rabbit toxicity study (Keller 1980), there was an absence of a biological response (no adverse effects were observed in rats up to the high dose of 360 mg/kg bw/day, both in groups with intact skin or with abraded skin), and there was no indication of systemic bioavailability following dermal exposure.
- *In vitro* studies with isolated pig skin using ¹⁴C-labelled BMBDM (avobenzone) at a concentration of 2% or 7.5 % in cream formulations exposed for 6 hours, showed that majority of the topically applied BMBDM remained on the skin surface (95%), 1.0-1.7% were found on the stratum corneum, 0.9-3.4% absorbed in the skin and only a minimum ($\leq 0.5\%$) was found to pass the skin. Briefly, the results indicate a low penetration rate of avobenzone when applied on pig skin (up to

³ https://ec.europa.eu/health/ph_risk/committees/04_sccp/sccp_opinions_en.htm

1.5 % of applied radioactivity 6 h post application). Dermal penetration in pig skin was not influenced by UV light (ECHA 2021A).

- In an *in vitro* study (DSM 1982) with ^{14}C -labelled BMDBM (avobenzone) using isolated human abdominal cadaver skin, up to 2.7 % of the applied radioactivity was observed in the epidermis, 7.3 % in the dermis 18 hr post dose but no activity was found in the collection fluid at any time and lower skin corium contained only 0.34 % after the longest exposure period (ECHA 2021A).
- A human *in vivo* study also indicated a very low level of systemic penetration of BMDBM (avobenzone) or its metabolites. In the study, a preliminary study (occluded) was followed by the main study where human volunteers were exposed to a 10% solution of ^{14}C -labelled BMDBM in carbitol for 8 hours.⁴ The amounts of BMDBM found in the urine were 0.08 and 0.016 % for the occluded and non-occluded experiment, respectively. No radioactivity was found in the blood or faeces in any subject. Therefore, these data confirm only a very low level of systemic penetration of BMDBM or its metabolites (ECHA 2021A).

A recent study demonstrated that there was very poor skin permeation of avobenzone after single or repeated applications of sunscreens (Montenegro *et al.* 2018). However, recent randomised clinical trials indicate that avobenzone was systemically absorbed in humans (see [Clinical Trials](#)).

In the absence of further kinetic data for avobenzone and based on the data from the *in vitro* study using isolated human abdominal cadaver skin ((ECHA 2021A), a **7.3% dermal absorption** of avobenzone was assumed.

Ethylhexyl triazone

No specific pharmacokinetic data are available for ethylhexyl triazone. The ingredient is expected to have low oral and dermal bioavailability based on its physiochemical properties (Molecular weight > 500 Dalton and Log P_{ow} > 4; Table 2.1)

Ethylhexyl triazone did not penetrate the receptor fluid in an *in vitro* study by Monti *et al.* (2008) when applied to the reconstructed human skin model and the rat skin. However, BASF (1995) reported *in vitro* permeation of ethylhexyl triazone in the sunscreen formulation, but no value was provided.

In an *in vitro* diffusion study (6-h exposure of the ex-vivo porcine-ear skin to the sunscreen, water-oil emulsion containing 10% oxybenzone and 5% ethylhexyl triazone, doses of 1 mg/cm² and 2 mg/cm²), 23.2 \pm 4.1 mg/cm² and 18.3 \pm 2.5 $\mu\text{g}/\text{cm}^2$ of oxybenzone and ethylhexyl triazone, respectively were found in the stratum corneum, whereas 1.5 \pm 0.3 mg/cm² of oxybenzone was found in the receptor fluid (Hojerová *et al.* 2017). Ethylhexyl triazone was not determined in the receptor fluid. The study authors concluded, that approximately 0.54 mg/cm² of ethylhexyl triazone (i.e., ~1.08% of the amount of ingredient applied) permeated the excised human epidermis into the receptor fluid. Approximately 1.3 and 1.8 \times higher content of oxybenzone and ethylhexyl triazone were found in the viable epidermis and dermis, respectively, and 2.3- and 1.5-times higher content in the receptor fluid, respectively, when the study was conducted on shaved skin. Insignificant percutaneous absorption of ethylhexyl triazone across the shaved skin was noted. The total recovery in the whole study (intact and/or shaved skin) was 87.5- 90.4% consistent with the recovery (85- 115%) allowed by the SCCS (2016). The SED after the sunscreen application at 1 mg/cm² for 6 h on the: (i) face; and (ii) whole-body skin, was (i) 136 and 30; (ii) 4200 and 933 mg/kg bw/day for oxybenzone and ethylhexyl triazone, respectively. Reapplication caused approximately 1.4 -fold increase in the SED values indicating partial saturation after the first application.

Preferential ethylhexyl triazone distribution into stratum corneum was also noted by Sauce *et al.* (2020) in tape strip samples obtained from human volunteers ($n = 12$) treated with 100 $\mu\text{g}/\text{mL}$ of the compound emulsified in cosmetic oil/water formulation (5% w/w) and applied at 2.0 mg/2.25 cm² for 2 h. However, only first 10 μm of the upper layers was collected (thickness of stratum corneum is ~30

⁴ The dose was applied to a small square of gauze (10 cm²) taped to the skin.

µm) and given that the total recovery observed in this section was 56.34 %, the authors concluded that the remaining 44.66% of the dose penetrated deeper strata.

An *in vivo* study investigating the penetration of ethylhexyl triazole in human stratum corneum demonstrated that 21.9% (\pm 4.9) of the applied ethylhexyl triazole dose diffused into the stratum corneum. However, the skin penetration reduced significantly (by 45.7%) when ethylhexyl triazole was applied in microencapsulated form (Scalia *et al.* 2019).

In the absence of an appropriate dermal absorption value for ethylhexyl triazole, a **dermal absorption of 10%** was assumed based upon physicochemical parameters.

Homosalate

Studies in animals and human skin showed that homosalate could penetrate the skin in a variable manner. *In vitro* experiments indicated that about 1.1% of the applied dose was absorbed by human skin (range: 0.9-2.0%) (CTFA 2005).

Maximum plasma concentrations of homosalate after topical application varied between 13.9 and 23.1 ng/ml and $t_{1/2}$ between 46.9 and 78.4 h in clinical trials (see [Clinical Trials](#)). Homosalate was also detected in human milk samples after topical application in samples from different cohorts (2004, 2005, 2006) (Schlumpf *et al.* 2010). 15.1% of mothers reported use of homosalate exclusively in sunscreens with no additional use of other cosmetics. Homosalate was detected in 5.56% of total milk samples. However, homosalate could not be detected in human breast tissue samples (Barr 2018).

The *in vitro* metabolism of homosalate was investigated in rat and human liver microsomes. Homosalate (10 mM) incubated with human or rat liver microsomes (1 mg/ml protein) was hydrolysed into salicylic acid and 3,3, 5-trimethylcyclohexanol. In addition, conjugation and hydroxylation of intact homosalate was detected *in vitro*.

Commercial products often contain mixtures of *cis*- and *trans*-homosalate isomers (*cis*-HMS and *trans*-HMS respectively). Ebert *et al.* (2022) reported 87.2 - 91.9% of *cis*-HMS and 8.1-12.8% of *trans*-HMS in total homosalate content in 10 examined sunscreen products. However, following oral administration, homosalate isomers displayed diastereoselective metabolism, which was skewed towards *trans*-HMS e.g., metabolite levels derived from *trans*-HMS (6.4 %), including carboxylic acid and alkyl-hydroxylated compounds, were 142-fold higher compared to *cis*-HMS (0.045 %) while its bioavailability was 10-times higher. Although it is currently unknown whether homosalate applied dermally also undergoes divergent isomer metabolism, preliminary data of Ebert *et al.* agree with the findings from the oral study.

The SCCS selected a new skin penetration study using human skin from which a dermal absorption of 5.3% (mean +1SD: 3.86 \pm 1.43) was derived (SCCS 2020).⁵

Octocrylene

Octocrylene is expected to be absorbed in the GI tract by micellar solubilisation based on its physicochemical properties (ECHA 2020b). The inhalational uptake of octocrylene is likely to be low due to the very low vapour pressure (4×10^{-7} Pa at 20°C) (ECHA 2020b).

Octocrylene has been found to induce xenobiotic-metabolising enzymes based on mechanistic studies, oral repeated dose toxicity and reproductive/developmental toxicity studies (SCCS 2021a; ECHA 2020b). An *in vitro* study on the hydrolysis-stability in rat liver S9 fraction indicated that octocrylene was metabolized in liver S9 fraction only (ECHA 2020b).

Human octocrylene metabolism and the pathways were described by Bury *et al.*, (2019). Six metabolites of octocrylene were detected in human urine after both oral and dermal exposure

⁵ The June 2021 SCCS opinion for homosalate uses a different dermal absorption value for the SED calculation. The systemic exposure dose for homosalate used as a UV filter in cosmetic products is calculated using a dermal absorption value of 5.3% derived from an *in vitro* dermal penetration study using viable human skin (Finlayson 2021, as cited in SCCS 2020) and a standard sunscreen formulation containing 10% homosalate.

simulating a regular-use scenario with whole body application to octocrylene. 2-cyano-3,3-diphenylacrylic acid (CDAA) was identified as the major urinary metabolite (~45% of the octocrylene dose) followed by 2-ethyl-5-hydroxyhexyl 2-cyano-3,3-diphenyl acrylate (5OH-OC) and 2-(carboxymethyl) butyl 2-cyano-3,3-diphenyl acrylate (dinor OC carboxylic acid, DOCCA). Faecal excretion was observed. *In vitro* study with human and rat liver microsomes in the presence of NADPH and glutathione (GSH) suggested that the ester bond of octocrylene can be hydrolysed to form 3,3-diphenyl cyanoacrylate (DPCA) and 2-ethylhexanol based on the chemical structure of octocrylene (Guesmi *et al.* 2020).

Dermal exposure resulted in much lower concentrations of metabolites with considerably delayed elimination despite much higher octocrylene (> 25-fold) applied dermally (dermal dose 217 mg vs oral dose ~5 mg). This suggests a slower uptake of octocrylene through the skin.

Table 0-1 Toxicokinetic data in urine after oral and dermal exposure to octocrylene (adapted from Bury *et al* 2019)*

Text		CDAA	5OH-OC	DOCCA
Oral (n=3)	Concentration (µg/g creatinine)	2450 (1150-4410)	1.85 (1.62-2.11)	10.6 (9.94-11.1)
	t _{max} (hours)	4.2 (2.7-5.0)	3.2 (1.4-4.4)	3.6 (1.4-5.0)
	t _{1/2} (hours)	5.7 (3.8-7.1)	1.3 (1.1-1.5)	3.0 (2.1-3.6)
		16 (14-20)	6.4 (5.7-7.5)	16 (10-21)
Dermal (n=1)	Concentration (µg/g creatinine)	71.4	0.14	1.15

*Median (range) values are reported.

Following dermal application of octocrylene (8-10%) in *in vitro* studies, poor skin penetration (< 5%) of octocrylene was observed with mostly remaining in the stratum corneum (Freitas *et al.* 2015; Potard *et al.* 2000; Hayden *et al.* 2005). The dermal absorption (%) was not determined in these studies. Similar findings were observed in a study with a formulation (8% octocrylene) applied on freshly dermatomized human skin ($344 \pm 61 \mu\text{m}$) in static diffusion cells at a dose of 3 mg/cm^2 for a 16-hour period. 0.1%, 0.005% and 4.3% of the applied dose were found in epidermis, dermis and in the stratum corneum, respectively (ECHA 2020b). No octocrylene was detectable in the receptor fluid. After 24 hours of dosing, octocrylene bioavailability (epidermis, dermis and receptor fluid) was estimated ~ 0.1% of the applied dose (ECHA 2020b; SCCS 2021a). In another study, a cream formulation (8% octocrylene) was applied for 16 hours ($3 \text{ mg formulation/cm}^2$) on freshly dermatomed pig ($700 \pm 50 \mu\text{m}$) and human ($350 \pm 50 \mu\text{m}$) skin in static diffusion cells (ECHA 2020b). In the study with pig skin, no octocrylene was detectable in the receptor fluid whereas 2.8% and 0.3% of the applied dose were found in pig epidermis and dermis, respectively, and 14% were detected in the stratum corneum. In the study with human epidermis and dermis, only 0.125% of the applied dose were found, whereas 5.4% was determined for human stratum corneum. Based on these data, the amount bioavailable (epidermis, dermis and receptor fluid) represents approximately 0.2% and 3% of the applied dose in the human and pig skin, respectively (ECHA 2020b). The SCCS (2021a) also referred to the octocrylene Chemical Safety Report (2010) which indicated a low dermal absorption rate ($\leq 0.25\%$).

A recent *in vitro* study (Fabian and Landsiedel 2020, as cited in SCCS 2021a) with a formulation (10% octocrylene) applied at a dose of $3 \text{ mg formulation/cm}^2$ on dermatomized human skin preparations ($n = 12$ skin samples from six females) for 24 hours was evaluated by SCCS (2021a). At 24 hours post-dose, the amount considered as absorbed (epidermis, dermis and receptor fluid) was estimated to be a maximum of $0.45 \pm 0.52 \mu\text{g/cm}^2$ (~ 0.15% of the applied dose) consistent with previous findings. The **dermal absorption of $0.97 \mu\text{g/cm}^2$** (Fabian and Landsiedel 2020, as cited in SCCS 2021a) was considered a worst-case scenario for octocrylene and was used in the calculation of SED and MoS by the SCCS (2021a).

Octinoxate

Octinoxate absorption studies (oral and dermal) in rats and mice indicate octinoxate can be absorbed dermally and orally (Fennell *et al.* 2018). Octinoxate was rapidly cleared from rat hepatocytes (half-life ≤ 3.16 min) compared to human hepatocytes (half-life ≤ 48 min). [^{14}C]-octinoxate was extensively absorbed and excreted primarily in urine by 72 h after oral administration (65-80%) and a lesser extent (3-8%) in faeces and as CO_2 (1-4%).

Five metabolites were found in rat urine after oral exposure to octinoxate (200 mg/kg bw and 1000 mg/kg bw) (Huang *et al.* 2019). The major metabolites of octinoxate were 4-methoxycinnamic acid (4-MCA) and 4'-methoxyacetophenone (4'-MAP). The concentration of two metabolites was found to be much higher than octinoxate, highlighting that measuring octinoxate alone could not comprehensively evaluate the human exposure to octinoxate.

Dermal penetration was observed to be dependent on the vehicles, when using the tape-stripping technique. Significantly greater amounts were absorbed when the chemical was applied in emulsions than when microencapsulated (HSDB). Octinoxate was able to penetrate the skin, and derivatives were formed when it was applied with oleaginous cream as a vehicle on excised rat skin. In contrast, octinoxate penetration was not observed following the administration of octinoxate as entrapped into solid lipid microspheres (SLM) (Yener *et al.* 2003).

Studies with porcine skin showed that about 9% of the applied dose of octinoxate penetrates the skin with a flux of 27 $\mu\text{g}/\text{cm}^2\cdot\text{h}$ (Touitou and Godin 2008). An accumulation of ~9% of octinoxate in epidermis and ~2-3% in dermis were observed following application of 2 mg/cm^2 and 0.5 mg/cm^2 of octinoxate, respectively for 6 h exposure (Schneider *et al.* 2005). Octinoxate accumulation is expected to increase over time as the accumulation in dermis was found to be ~12-15% of the dose applied and 2-4% of the dose was found to cross the dermis and enter into the circulation after 24 hours.

An *in vitro* absorption study with sunscreen (O/W, oil in water emulsion and W/O, water in oil emulsion) containing octinoxate or EHMC (10%) on full-thickness pig-ear skin, mimicking human in-use conditions revealed the skin distribution of octinoxate from the sunscreen dose of 0.5 mg/cm^2 after 6-h exposure to the epidermis of frozen-stored skin was $4.8 \pm 0.7 \mu\text{g}/\text{cm}^2$, dermis $1.2 \pm 0.1 \mu\text{g}/\text{cm}^2$ and undetectable in receptor fluid, whereas $3.4 \pm 0.6 \mu\text{g}/\text{cm}^2$, $2.1 \pm 0.4 \mu\text{g}/\text{cm}^2$ and $0.9 \pm 0.1 \mu\text{g}/\text{cm}^2$ of octinoxate was distributed to epidermis, dermis and receptor fluid after following 18-h permeation, respectively (Klimova *et al.* 2015). Almost two-fold higher absorption was noted when water in oil emulsion containing 10% octinoxate was applied on pig skin in the same study (Klimova *et al.* 2015).

In this study, the authors “*tried to mimic the real-life habits of consumers when applying sunscreen as closely as possible*”. In this way the time of exposition was reduced to 6 hours (in contrast of classic studies using long skin exposure), and a smaller dose of sunscreen was used (0.5 mg/cm^2) (Klimova *et al.* 2015). Considering that some chemical substances, instead of passing entirely through the skin, can remain partly in the skin and released later in time, the dermal absorption was evaluated at the end of the exposure period and then following washing and an 18-h permeation.

The dermal absorption was obtained by the sum of the filter absorbed in the dermis and the receptor fluid (RF) (which was considered systematically available), corrected by the fresh/frozen – stored skin permeability coefficient. It is noted that pig-ear skin has been recognized by the international authorities and scientists as a practical alternative and relevant model for predicting permeability of cosmetic ingredients in humans (Klimova *et al.* 2015).

Human *in vitro* and *in vivo* studies showed that the permeation of octinoxate in human skin was dependent on both the lipid lipophilicity and structure of the lipid used in the microemulsion and the type of surfactant used (Montenegro *et al.* 2011; TGA 2020).

The systemic absorption of octinoxate in humans was demonstrated by Janjua *et al* (2008). Maximum plasma concentration of octinoxate was reached at ~ 3 h (10 ng/ml for females and 20 ng/ml for males) following daily whole-body topical application of 2 mg/cm^2 of cream formulation with 10% octinoxate. Octinoxate was also detected in urine (5 and 8 ng/mL in females and males, respectively).

Similar findings were reported following a 4-day exposure to this ingredient, which were detectable in the human plasma just 2 h following application (Janjua *et al.* 2004).

Another human study reported in SCC (2000) with a cream formulation containing 10% octinoxate suggested that an insignificant amount of octinoxate was absorbed under the conditions of the experiment (SCC 2000). Applications were made to the interscapular area and there was no evidence of any rise in plasma levels after 24 h. In addition, the urine concentration of octinoxate did not change during the experiment (collected until 96 h).

Based on all dermal absorption studies described above, no clear relationship between applied dose and dermal absorption could be established for octinoxate. Therefore, a **dermal absorption of 1.77 µg/cm²** was considered a worst-case scenario (Klimova *et al.* 2015).

Oxybenzone

Oxybenzone is expected to be rapidly absorbed after oral, intravenous or topical skin administration based upon studies in rats and piglets as per European Safety assessment reports (SCCS 2021c). Oxybenzone was well absorbed following a single gavage administration of [¹⁴C]-oxybenzone (3.01 to 2570 mg/kg) in male rats, with the administered dose excreted primarily *via* urine (63.9% to 72.9%) and faeces (19.3% to 41.7%) by 72 hours post-administration. The radioactivity remaining in tissues 72 hours after administration was low (~0.1%) in all dose groups. Oxybenzone is widely distributed in rats. Jung *et al.* (2022) assessed that bioavailability in rats following topical application as 6.9%.

Oxybenzone is metabolised in rats to 2-OH BP and BP-1, with a trace of 2, 3, 4-triOH BP. The major metabolite of oxybenzone, 2,4-diOH BP (BP-1) was present in most tissues including the liver, kidney, testes, intestine, spleen and skin six hours post-dose. Liver was the major distribution site of oxybenzone and BP-1 (SCCS 2021c). BP-1 is also the major metabolite in humans. Oxybenzone metabolites were detected in piglet plasma 2 hours post dose after dermal administration of oxybenzone (SCCS 2021c). Systemic absorption of oxybenzone has been demonstrated in recent clinical studies (Section 2.1). Oxybenzone binds to human serum albumin with $K_a = 1.32 \times 10^5 \text{ L/mol}$.

Elimination of oxybenzone is predominately *via* the urine (39-57%) and faeces (24-42%) in rats and mice, with differences observed between the species or the route of administration (oral or dermal). Following topical application studies in piglets, the elimination half-lives of oxybenzone ranged from 7.14 and 8.04 h (SCCS 2021c), while in rats it was 18.3 h (Jung *et al.* 2022).

A number of *in vitro* and *in vivo* dermal absorption studies have been evaluated by the SCCP 2008 and SCCS 2021c. Following application of 6% oxybenzone, the **dermal absorption of oxybenzone was determined to be 9.9%**. The dermal absorption value of 9.9% was calculated by the SCCP using an *in vitro* study using pig ear skin and applying a safety factor of 2 standard deviations to account for limitations in the data set ($3.1\% + 2 \text{ SD } [2 \times 3.4\%] = 9.9\%$) (SCCS 2021c). This *in vitro* study was chosen for oxybenzone in the absence of adequate information from *in vivo* studies.

Phenylbenzimidazole sulfonic acid

Absorption and plasma kinetics of PBSA were examined in pregnant rats (SCCP 2006b). [¹⁴C]-PBSA sodium salt was administered to pregnant rats on day 18 of gestation (1 mg/kg bw IV or 1000 mg/kg bw PO, single dose). The pharmacokinetic parameters were: T_{max} 5 min (IV) and 15 min (oral), with a $t_{1/2}$ of 0.4 h (IV) and 24 h (oral). The amount of absorption from the gastrointestinal tract was estimated to be 3 – 4%.

Dermal penetration was examined in male volunteers (SCCP 2006b). Although the penetration rate of PBSA was not established, cumulative penetration of 0.159% (range 0.107-0.259%) of the applied dose (8% formulation of PBSA), was derived from total excretion. Total recovery of radioactivity was 78.8%. There was no indication of accumulation in any of the organs investigated. Trace amounts of radioactivity are found in brain and fetuses after IV administration but not following oral administration.

This indicates that both blood/brain- and placental barriers were not passed. No data on metabolism were available.

Excretory pathways were examined in male rats (SCCP 2006b). Elimination of PBSA sodium salt was virtually completed by 72 hours. Elimination occurs *via* urine and faeces in male rats. In pregnant rats, elimination predominantly occurred *via* the faeces following oral administration and *via* both the urine and faeces following IV administration. Maximum **absorption through the skin of 0.259% (0.416 µg/cm²) determined** in the *in vivo* study in humans following application of an 8% formulation of PBSA was used by the SCCP to determine the margin of safety for PBSA (SCCP 2006b).

Clinical trials

In a recent randomised clinical trial, healthy volunteers ($n=24$; 6/ group) were treated with four sunscreen products, four times per day for 4 days, in indoor conditions, at a rate of 2 mg/cm² on 75% of body surface area. The sunscreen products were spray 1 (3% avobenzone/ 6% oxybenzone/ 2.35% octocrylene/ 0% ecamsule⁶), spray 2 (3% avobenzone/ 5% oxybenzone/ 10% octocrylene/ 0% ecamsule), lotion (3% avobenzone/ 4% oxybenzone/ 6% octocrylene/ 0% ecamsule); and cream (2% avobenzone/ 0% oxybenzone/ 10% octocrylene/ 2% ecamsule). The overall maximum plasma concentrations (C_{max}) of avobenzone, oxybenzone and octocrylene ranged from 4 to 4.3 ng/mL, 169.3 to 209.6 ng/mL and 2.9 to 7.8 ng/mL, respectively. The AUC increased from day 1 to day 4 and terminal half-life ($t_{1/2}$) was relatively long (33–55 h, 27–31 h and 42–84 h, respectively), suggesting a possible accumulation of the ingredients (Matta *et al.* 2019). The systemic exposure of avobenzone and oxybenzone in human plasma was re-quantified by Pilli *et al.* (2021) using novel UHPLC-MS/MS method and in general, the C_{max} values were comparable to the results obtained previously.

Similar findings were observed in a follow up study with six active ingredients (avobenzone, oxybenzone, octocrylene, homosalate, octisalate⁷, and octinoxate) (Matta *et al.* 2020). Four groups ($n=12$) of healthy adults received 2 mg/cm² (75% of body surface area) on day 1 and 4 times on day 2 to day 4 at 2-hour intervals and blood samples were collected over 21 days from each participant.

The C_{max} of all these ingredients exceeded the US FDA threshold (> 0.5 ng/mL) after a single application and remained above the threshold until day 7 for avobenzone (95%; $n = 42/44$), octisalate (75%; $n = 24/32$), and octinoxate (90%; $n = 18/20$); day 10 for octocrylene (67%; $n = 22/33$); and day 21 for homosalate (55%; $n = 17/31$) and oxybenzone (96%; $n = 22/23$). The overall exposure throughout the study (Days 1–21) is summarised in the following table taken from Matta *et al.* (2020).

	Geometric mean maximum plasma concentration, ng/mL (coefficient of variation, %)			
	Lotion	Aerosol spray	Nonaresol spray	Pump spray
Avobenzone	7.1 (73.9)	3.5 (70.9)	3.5 (73.0)	3.3 (47.8)
Oxybenzone	258.1 (53.0)	180.1 (57.3)	NA	NA
Octocrylene	7.8 (87.1)	6.6 (78.1)	6.6 (103.9)	NA
Homosalate	NA	23.1 (68.0)	17.9 (61.7)	13.9 (70.2)
Octisalate	NA	5.1 (81.6)	5.9 (77.4)	4.6 (97.6)
Octinoxate	NA	NA	7.9 (86.5)	5.2 (68.2)

Another study investigating systemic absorption of avobenzone and octocrylene using real-life exposure scenario demonstrated similar systemic absorption of the ingredients (Hiller *et al.* 2018).

⁶ Ecamsule (CAS 92761-26-7) is commonly used as an active ingredient in sunscreen. However, currently it is not used in any sunscreen product marketed in Australia.

⁷ Octisalate or octyl salicylate is an active ingredient used in sunscreen. This has been evaluated by TGA as an excipient to be used in prescription medicines.

Following dermal exposure, avobenzone, octocrylene and CDAA (major urinary metabolite of octocrylene) reached concentrations up to 11.3 µg/L, 25 µg/L and 1352 µg/L, respectively, in plasma (Table 0-2). When kinetic models were fitted for octocrylene and CDAA in plasma and CDAA in urine, concentration peaks reached between 10 and 16 h after first application and elimination half-life ($t_{1/2}$) were 36-48 hours. Octocrylene and CDAA showed slower elimination.

Table 0-2 Toxicokinetic data in humans following dermal exposure to octocrylene and avobenzone

Study details		<i>n=20; commercial sunscreen lotion containing octocrylene was applied three times (2 mg/cm² initially, then 1 mg/cm² after 2 h and 4 h) to 75–80% BSA)</i>		
Ingredient		Octocrylene	Avobenzone	CDAA
Concentration	(%)	10.85	2.34	NA
C_{\max} plasma (µg/L)	Mean (max)	11.7 (25)	4(11.3)	570 (1352)
C_{\max} in urine (µg/g creatinine)	Median (max)	9.6 (< LOD–91.4)	3.4 (< LOD–25.2)	2072 (5207)
T_{\max} plasma (hours), day 1	Median (95% CI)	10 (6.9-13.4)	ND	14.5 (13.2-15.9)
T_{\max} urine (hours), day 1		ND	ND	15.9 (15.2-16.7)
$t_{1/2}$ plasma (hours)		43.9 (19.0-68.7)	ND	36.1 (31.0-41.2)
$t_{1/2}$ urine (hours)		ND	ND	37.7 (35.1-40.4)

*81% of samples < LOD' c: concentration; C_{\max} : max plasma concentration; ND: not determinable; T_{\max} : time to maximum concentration; $t_{1/2}$: half-life; CDAA: 2-cyano-3,3-diphenylacrylic acid

Toxicity

The information on the safety of avobenzone, ethylhexyl triazone, homosalate, octinoxate, octocrylene, oxybenzone and PBSA using various toxicological endpoints, has been summarised in the following sections. It is important to note that the original toxicological study reports were not available for independent verification and therefore this report is reliant on the accuracy of various published safety assessment reviews (reviews by SCCS/SCC/SCCP, NICNAS, ECHA etc. see bibliography).

Acute toxicity

Avobenzone, ethylhexyl triazone, homosalate, oxybenzone, octocrylene, PBSA and octinoxate displayed low acute oral toxicity. Low acute dermal toxicity was observed for homosalate, oxybenzone, octocrylene, PBSA and octinoxate. Information for acute inhalational toxicity is only available for octinoxate (shown below).

Table 3-3. Summary of acute toxicity studies for sunscreen ingredients

Avobenzone (ECHA (2021a; DEPA 2015))	Ethylhexyl triazone (ECHA 2021b; DEPA 2015)	Homosalate (SCCS 2020; ECHA 2021c)	Octinoxate (ECHA 2021e)	Octocrylene (SCCS 2021a; ECHA 2021d)	Oxybenzone (SCCP 2006a; 2021c)	PBSA (SCCP 2006b)
Oral >16000 mg/kg bw (rats) Dermal, inconclusive*	Oral > 5000 mg/kg bw (rats)	Oral > 5000 mg/kg (rats) Dermal > 5000 mg/kg bw (rabbits)	Oral >8 g/kg (mice) >20 mL/kg (20.0 mg/kg) (rats) Dermal >126.5 mg/kg (rats) Inhalation LC50 >0.511 mg/L (rats)	Oral > 5000 mg/kg bw (rats) Dermal > 2000 mg/kg bw (rats)	Oral > 6000 mg/kg bw (rats) Dermal > 16000 mg/kg bw (rabbits)	Oral >5000 mg/kg bw (mice) >1600 mg/kg bw (rats) Dermal >3000 mg/kg bw (rats) IP 1000 – 1500 mg/kg bw (rats)

The values are LD₅₀ determined in relevant studies extracted from the safety assessment reviews; *Acute dermal toxicity was tested up to a dose of 1000 mg/kg bw in rats showing no deaths. Slight erythema was observed in treated animals and in the vehicle control, assuming that the vehicle, carbitol, has a slight irritant effect to skin. Concerning acute dermal toxicity, the test item was only tested up to a maximum dose of 1000 mg/kg bw, whereas the regulatory cut-off level for classification according to Regulation (EC) No 1272/2008 (CLP) is 2000 mg/kg bw.

Local tolerance

Skin irritation and eye irritation studies were generally conducted as per the OECD TG 404 and 405 guidelines, respectively. All ingredients examined were found to be non-irritants to the skin and eye in *in vivo* studies in animals (see below).

Table 3-4. Summary of skin and eye irritation studies for sunscreen ingredients

Study	Avobenzone (ECHA (2021a; DEPA 2015))	Ethylhexyl triazone (ECHA (2021b; DEPA 2015)	Homosalate (SCCS 2020; ECHA 2021c)	Octinoxate (ECHA 2021e)	Octocrylene (SCCS 2021a; ECHA 2021d)	Oxybenzone (SCCP 2006a; 2021c)	PBSA (SCCP 2006b)
Skin	Non-irritant (at 10% in rabbits)	Non- irritant, undiluted(rabbits)	Non-irritant (mice, Guinea pigs)	Non- irritant, undiluted (rabbits, guinea pigs)	Non-irritant (rabbits)	Non-irritant (rabbits)	Non-irritant (rabbits)
Eye	Non-irritant (at 5-20% in rabbits)	Non- irritant,	Non-irritant (at 10%)	Non- irritant,	Non-irritant (rabbits)	Non-irritant (rabbits)	Non- irritant (rabbits)

Study	Avobenzene (ECHA 2021a; DEPA 2015)	Ethylhexyl triazole (ECHA 2021b; DEPA 2015)	Homosalate (SCCS 2020; ECHA 2021c)	Octinoxate (ECHA 2021e)	Octocrylene (SCCS 2021a; ECHA 2021d)	Oxybenzone (SCCP 2006a; 2021c)	PBSA (SCCP 2006b)
		undiluted (rabbits)		undiluted (rabbits)			

Sensitisation

With the exception of octocrylene, all the ingredients were not found to be skin sensitisers in *in vivo* studies in animals (see below).

Table 3-5. Summary of skin sensitisation studies for sunscreen ingredients

Avobenzene (ECHA 2021a; DEPA 2015)	Ethylhexyl triazole (ECHA 2021b; DEPA 2015)	Homosalate (SCCS 2020; ECHA 2021c)	Octinoxate (ECHA 2021e)	Octocrylene (SCCS 2021a; ECHA 2021d)	Oxybenzone (SCCP 2006a; 2021c)	PBSA (SCCP 2006b)
Not sensitizing (at 6% and 20% in GPMT)	Not sensitizing (GPMT)	Not sensitizing (GPMT and mice) Not sensitizing (at 15%, HRIPT)	Not sensitizing (GPMT)	Not sensitizing (GPMT) Moderate sensitising in a LLNA (not properly conducted)	Not sensitizing (GPMT) Not sensitising (LLNA)	Not sensitizing (GPMT)

GPMT: Guinea Pig Maximization Test; LLNA: Local Lymph Node Assay; HRIPT: Human repeated insult patch test

Repeat dose toxicity

A summary of repeat-dose toxicity studies for each sunscreen ingredient is shown in the table below:

Table 3-6. Repeat-dose toxicity studies for sunscreen ingredients

Active ingredient	Study details ^A	Major findings
Avobenzone (ECHA 2021a; DEPA 2015)	Rats (<i>n</i> =12/sex/dose), doses: 0, 200, 450, and 1000 mg /kg bw/day (diet), 13 weeks	No treatment-related mortality. No effect on the body weight and food consumption. ↓ RBC in ♀ rats at 1000 mg/kg bw/day. No findings in eyes. No treatment-related necropsy findings. Treatment-related ↑ liver weights at 1000 mg/kg bw/day in ♂ and at 200, 450, and 1000 mg/kg bw/day in ♀ compared to control. All effects were fully

Active ingredient	Study details ^A	Major findings
		<p>reversed after a treatment-free period of 4 weeks.</p> <p>Hypertrophic hepatic parenchyma cells in ♀ at 1000 mg/kg bw/day.</p> <p>NOAEL: 450 mg/kg bw/day</p> <p><i>Applying route to route extrapolation, by assuming that penetration of avobenzone through skin is equal to penetration through the intestinal wall, the same effect levels as for oral route shall apply for the dermal route of exposure (ECHA 2021)</i></p>
	<p>Rabbits ($n=10/\text{sex/group}$), 1.5, 5 and 18 % w/v solutions in carbitol (vehicle) (30, 100 and 360 mg/kg bw/day) (dermal once daily), exposure: 6 hours/day, 28 days</p>	<p>No treatment-related mortality.</p> <p>↑ dose dependent severe dermal reactions ≥ 30 mg/kg/day, more persistent at 100 mg/kg bw/day.</p> <p>↑ Incidence of epidermal thickening in both vehicle control and treatment groups compared to the untreated control group.</p> <p>NOAEL: 360 mg/kg bw/day (based on systemic effects).</p> <p>LOAEL: 30 mg/kg/bw/day (dermal)</p>
<p>Octocrylene (ECHA 2021d; SCCS 2021a)</p>	<p>Rats (Wistar), $n = 10/\text{sex/dose}$ 0, 58, 175, 340 and 1085 mg/kg bw/day (diet), 13 weeks</p> <p>Study BASF 50S0227/92059</p>	<p>No treatment-related mortality.</p> <p>No treatment-related clinical signs.</p> <p>Body weight gain: ↓ at HD in both sexes along with decreased food consumption</p> <p>Haematology: RBC affected (↓MCV, ↓MCH, ↓MCHC) at HD in both sexes</p> <p>Organ weights (bodyweight-relative): ↑ absolute and relative weight of liver at 340 and 1085 mg/kg bw/day</p> <p>Histopathology: hypertrophy of periacinar and centriacinar hepatocytes at 340 and 1085 mg/kg bw/day; Slight or moderate hypertrophy of the</p>

Active ingredient	Study details ^A	Major findings
		thyroid, follicular epithelium and associated pale staining colloid at 340 and 1085 mg/kg bw/day NOAEL: 175 mg/kg bw/day
	Rabbits (NZW), <i>n</i> = 5/sex/dose 0, 130, 264, 534 mg/kg bw/day (dermal) 5 days/week; 13 weeks (Odio <i>et al.</i> , 1994)	Slight to moderate skin irritation (erythema and desquamation) at all doses at the site of application correlated to ↓ bodyweight gain at 264 and 534 m/kg bw/day. No evidence for haematological or macroscopic and histopathological abnormalities No effects were reported on testicular and epididymal morphology as well as on sperm count and motility NOAEL: 534 mg/kg bw/day (systemic toxicity) NOAEL: 130 mg/kg bw/day (dermal)
	A follow up mechanistic study was conducted in rats to investigate mechanisms related to potential thyroid effects of octocrylene observed in the 13-week oral repeat dose study in rats Rats (Wistar), <i>n</i> = 5/sex/dose 72, 215, 720 mg/kg bw/day PO (Subset A) 63, 188, 630 mg/kg bw/day PO (Subset B) 28 days (Subset A) 14 days (Subset B)	No treatment-related mortality No treatment-related clinical signs. Body weight gain: ↓ at HD in both subsets Serum chemistry: ↑ TSH at 630 mg/kg bw/day in ♀ in subset B; ↑ TSH at 720 mg/kg bw/day in both sexes in subset A Organ weights (bodyweight-relative): ↑ absolute and relative weight of liver at high doses in both sexes in both subsets Histopathology: minimal follicular cell hypertrophy/hyperplasia of the thyroid gland at high doses in both sexes in both subsets NOAEL: 188-215 mg/kg/day
Octinoxate (ECHA 2021e)	Rats (not specified), <i>n</i> =5/sex/dose, at 300, 900 and 2700 mg/kg bw/day (gavage), 3 weeks	↓ body weight, ↓ relative and absolute weight of the thymus at HD, ↓ absolute weight of the

Active ingredient	Study details ^A	Major findings
	Rats (SPF), <i>n</i> =12/ sex/dose, at 200, 450 and 1000 mg/kg/day (oral), 13 weeks with recovery period of 5 weeks	left kidney (♂) and ↓ absolute weight of the heart (♀) at HD. NOAEL: 900 mg/kg bw/day. ↑ Kidney weights at HD, reversed during the recovery period (5 weeks). ↓ glycogen in the liver and ↑ iron in the Kupfer cells at HD, ↑ GLDH in ♀ at HD. Some of the effects were reversed during the recovery period; however, then reversed effects were not listed in the AICIS report. NOAEL: 450 mg/kg/day based on the minor and reversible changes at 1000 mg/kg bw/day
	Rats (SD), <i>n</i> =10/sex/dose, 55.5, 277 and 555 mg/kg/day, 5 days/ week, 13 weeks (dermal)	Mortality: none treatment-related ↑ (non-significant) serum alanine phosphatase (SAP) levels and ↑ relative liver weight at HD. Liver effects were not observable upon microscopic examination. NOAEL: 555 mg/kg bw/day based on no significant adverse effects at the highest treated dose
	Rats (SD), <i>n</i> =15/sex/dose; 0, 500, 1500 or 5000 mg/kg/day applied occlusively on the abraded skin, 6 days/ week, 28 days (dermal)	No systemic effects, body weight changes, ocular defects, haematology effects or changes in blood chemistry parameters were observed. Dose dependent low-grade epidermal proliferation at all doses (more prominent in ♂). The chemical was considered as a low-grade irritant under the conditions of this study (OECD TG 410) NOAEL: 5000 mg/kg bw/day
	Rabbits (NZW), <i>n</i> = 10/sex/dose, 500, 1500 or 5000 mg/kg bw/day applied occlusively on the abraded skin, 6 hours/day, 21 days (dermal)	Mortality: 3 at HD Lethargy, hunched posture, hair loss, soiled coats, emaciation, increased respiration, swelling of the conjunctivae, and reproductive

Active ingredient	Study details ^A	Major findings
		<p>effects (retardation of testicular growth) at HD.</p> <p>Haematological changes including ↑ neutrophils and urea nitrogen, and ↓ lymphocytes and alkaline phosphatase activity at HD.</p> <p>Dermal irritation effects (erythema, oedema, desquamation, cracking and atonia) were observed at all doses but were more severe at the HD.</p> <p>Histopathology of the skin sites showed an epidermal proliferative response with low grade inflammatory reaction (dose dependent).</p> <p>NOAEL: 1500 mg/kg bw/day</p>
Ethyl hexyl triazone (ECHA 2021b; DEPA 2015)	<p>Rats (Wistar), $n=10/\text{sex/group}$, 0, 1000, 4000, and 16000 mg/kg bw/day; 7 days/week, 90 days (oral)</p>	<p>Slight variations in the haematological and clinical chemistry parameters corresponded to the range of biological variation in the species.</p> <p>↑ Liver-weight without histological correlates among treated female animals could not be interpreted as being treatment-related.</p> <p>NOAEL: 1000 mg/kg bw/day (nominal) was mentioned.</p>
	<p>Rats, $n = 10/\text{sex/group}$, 0, 1000, 4000, and 16000 mg/kg bw/day (diet); 7 days/week, 90 days</p>	<p>Clinical signs: none treatment-related in the haematological and clinical chemistry parameters</p> <p>No treatment-related effects on organs</p> <p>NOAEL: ≤ 1275 mg/kg bw/day (nominal)</p>
Oxybenzone (SCCP 2006a; 2021c)	<p>Mice (B6C3F1; $n = 5/\text{sex/group}$), 0, 3125, 6250, 12500, 25000, 50000 ppm (equivalent to 1021, 2041, 4430, 8648, 20796 mg/kg bw/day), 14 days (diet)</p>	<p>Mortality: none</p> <p>Bodyweight gain: ↓ in ♂ at HD.</p> <p>Organ weight: ↑ liver weights (♂ & ♀) from LD, associated histopathology observed at 2041 mg/kg bw/day; ↓ kidney weight in ♂ from 8648 mg/kg bw/day.</p>

Active ingredient	Study details ^A	Major findings
	<p>Mice (B6C3F1; $n = 10/\text{sex}$), doses: 0, 0, 3125, 6250, 12500, 25000, 50000 ppm (equivalent to 554, 1246, 2860, 6780, 16238 mg/kg bw/day), 90 days (diet)</p>	<p>NOAEL: 992 (♂)/1050 (♀) mg/kg/day</p> <p>Mortality: none</p> <p>Bodyweight: \downarrow BW gain in ♂ & ♀ from 6780 mg/kg bw/day</p> <p>Organ weights: \uparrow liver weight from 1246 mg/kg bw/day with histopathology from 6780 mg/kg bw/day. Renal histopathology at HD in ♂.</p> <p>Reproductive parameters: \downarrow sperm density and \uparrow abnormal sperm in ♂ and \uparrow oestrus cycle length in ♀ at HD</p> <p>NOAEL: 2860 mg/kg/day (equivalent to 1068 and 1425 mg/kg/day in ♂ and ♀, respectively)</p>
	<p>Rats (F344/N; $n = 5/\text{sex/group}$), Doses: 0, 3125, 6250, 12500, 25000, 50000 ppm (equivalent to 303, 576, 1132, 2238, 3868 mg/kg bw/day), 14 days (diet)</p>	<p>Mortality: none</p> <p>Bodyweight gain: \downarrow in ♂ at HD.</p> <p>Organ weight: \uparrow liver (♂ & ♀) and kidney (♂) weights from LD, associated histopathology observed at 576 mg/kg bw/day in liver and at HD in kidney.</p> <p>NOAEL: 303 mg/kg/day (equivalent to 295 and 311 mg/kg/day in ♂ and ♀, respectively)</p>
	<p>Rats (F344/N; $n = 10/\text{sex/group}$), Doses: 0, 3125, 6250, 12500, 25000, 50000 ppm (equivalent to 0, 204, 411, 828, 1702, 3458 mg/kg bw/day), 90 days (diet)</p>	<p>Mortality: none.</p> <p>Clinical signs: coloured urine from LD.</p> <p>Bodyweights: \downarrow BW gain in ♂ & ♀ from 1702 mg/kg bw/day.</p> <p>Clinical pathology: serum protein levels from 411 mg/kg bw/day, \uparrow platelet counts from 1702 mg/kg bw/day</p> <p>Organ weights: \uparrow liver weight from LD; \uparrow kidney weight in ♀ from 1702 mg/kg bw/day with dilation of renal tubules, inflammation with fibrosis in renal interstitium at HD.</p> <p>Reproductive parameters: \downarrow sperm motility in ♂ and \uparrow</p>

Active ingredient	Study details ^A	Major findings
		<p>oestrus cycle length in ♀ at HD.</p> <p>NOAEL: 411 mg/kg bw/day (equivalent to 429 and 393 in ♂ and ♀, respectively)</p>
	<p>Mice (B6C3F1; $n = 5/\text{sex/group}$), Doses: 0, 0.5, 1.0, 2.0, 4.0, 8.0 mg/mouse in acetone or lotion* (equivalent to 24.8, 48.4, 100, 196, 388 mg/kg bw/day), 14 days (dermal)</p>	<p>Mortality: none</p> <p>Organ weights: ↑ liver weight from 196 mg/kg bw/day.</p> <p>NOAEL: 388 (♀) mg/kg bw/day (equivalent to 384 and 432 mg/kg/day in ♂ and ♀, respectively)</p>
	<p>Mice (B6C3F1; $n = 10/\text{sex/group}$), Doses: 0, 22.8, 45.5, 91, 183, 364 mg/kg bw/day in acetone or lotion*, 90 days (dermal, 5 days/week)</p>	<p>Mortality: none.</p> <p>Organ weights: ↑ kidney weight in ♂ at all doses</p> <p>Reproductive parameters: ↓ epididymal sperm density in ♂ at all doses.</p> <p>NOAEL: 364mg/kg bw/day in ♂ and ♀</p>
	<p>Rats (F344/N; $n = 5/\text{sex/group}$), doses: 0, 1.25, 2.5, 5, 10, 20 mg/rat in acetone or lotion* (equivalent to 7, 13.6, 27.7, 54.9 and 110 mg/kg bw/day), 14 days (dermal) (5 days/week for 2 weeks)</p>	<p>Mortality: none</p> <p>Organ weights: ↑ liver weight in ♀ from 27.7 mg/kg bw/day, ↑ kidney weight in ♀ at HD</p> <p>NOAEL: 100 (♂)/140 (♀) mg/kg bw/day</p>
<p>PBSA (SCCP 2006b)</p>	<p>Rats (Wistar; $n = 5/\text{sex/group}$) Doses: 0, 100, 330 and 1000 mg/kg bw, 13 weeks (oral)</p>	<p>No treatment-related effects.</p> <p>NOAEL: 1000 mg/kg bw/day</p>
<p>Homosalate (SCCS 2020; ECHA 2021c)</p>	<p>Rats, $n=5/\text{sex/dose}$, 0, 100, 300, 1000 mg/kg bw/day, 2 weeks (gavage)</p>	<p>Mortality: none</p> <p>Clinical signs: none treatment related</p> <p>Body weight gain: ↓ at HD in ♂ along with decreased food consumption</p> <p>Haematology: none treatment related</p> <p>Serum chemistry: ↑ Triglycerides in both sexes at HD ↑APTT in ♂ at MD</p> <p>NOAEL: > 300 mg/kg bw/day ♂</p> <p>NOAEL: >1000 mg/kg bw/day ♀</p>

Active ingredient	Study details ^A	Major findings
	<p>Repeat dose/ reproduction/ developments study</p> <p>Rats (Wistar), $n = 10/\text{sex}$, 0, 60, 120, 300, 750 mg/kg bw/day (gavage), 7 weeks duration (ECHA 2020)</p>	<p><i>Mortality:</i> 2 ♀ at 750 mg/kg bw/day</p> <p><i>Clinical signs:</i> none treatment-related</p> <p><i>Body weight gain:</i> ↓ at 750 mg/kg bw/day in ♂ and ♀</p> <p><i>Haematology:</i> none treatment-related</p> <p><i>Serum chemistry:</i> ↑ Albumin and ↓ Globulin in ♂ at 300 mg/kg bw/day</p> <p><i>Urinalysis:</i> not conducted</p> <p><i>Organ weights (bodyweight-relative):</i> ↑ absolute and relative weight of liver in both sexes at 300 and 750 mg/kg bw/day, ↑ kidney in ♀ at 300 mg/kg bw/day. ↓ thymus in both sexes at 750 mg/kg bw/day. ↓ prostate and seminal vesicles at HD 750 mg/kg bw/day.</p> <p><i>Gross pathology:</i> no treatment-related findings</p> <p><i>Histopathology:</i> ↑ Minimal/moderate intra-epithelial hyaline droplets in the kidneys ♂ from 60 mg/kg bw/day (associated with ↑ in foci of basophilic tubules, single cell death and/or the presence of granular casts)*</p> <p>Minimal/mild hypertrophy of hepatocytes (1/5 ♂) at 120 mg/kg bw/day, and almost every ♂ and ♀ from 300 mg/kg bw/day.</p> <p>Hypertrophy of the follicular epithelium of thyroid gland in ♂ at 750 mg/kg bw/day and in ♀ from 300 mg/kg bw/day.</p> <p>↓ Cortical lymphocytes in males from 300 mg/kg bw/day and in ♀ at 750 mg/kg bw/day</p> <p><i>NOAEL:</i> ** mg/kg bw/day</p> <p>*The REACH registrants considered this as manifestations of hyaline</p>

Active ingredient	Study details ^A	Major findings
		<p>droplet nephropathy without giving further evidence.</p> <p>**Based on this study, the REACH registrants derived a NOAEL of 300 mg/kg/day for general toxicity based on mortality in HD females. However, at this dose effects on kidneys, liver, thyroid and thymus occurred. <u>In males, effects were noted from the lowest dose of 60 mg/kg bw/d</u>, therefore the SCCS considers this dose as LOAEL.</p>

^A GLP compliance was not specified in the reviews

Genotoxicity

A summary of genotoxicity studies for each sunscreen ingredient is shown in the table below. With the exception of homosalate, all sunscreen ingredients were negative in *in vitro* and *in vivo* tests. Homosalate was negative in the Ames test and the gene mutation test in Chinese hamster cells *in vitro*. However, homosalate induced DNA damage the Comet assay in isolate human peripheral lymphocytes and in the micronucleus assay *in vivo*.

Table 3-7. Summary of genotoxicity studies with sunscreen ingredients

Avobenzene (ECHA (2021a; DEPA 2015)	Ethylhexyl triazole (ECHA (2021b; DEPA 2015)	Homosalate (SCCS 2020; ECHA 2021c)	Octinoxate (ECHA 2021e)	Octocrylene (SCCS 2021a; ECHA 2021d)	Oxybenzone (SCCP 2006a; 2021c)	PBSA (SCCP 2006b)
<p><i>In vitro</i> Negative AMES test and gene mutation study V79 Chinese hamster cells</p> <p><i>In vivo</i> Negative Bone marrow polychromatic erythrocytes (mice)</p>	<p><i>In vitro</i> Negative AMES test, Chinese hamster lung fibroblasts for chromosome aberration, Chinese hamster ovary (CHO) cells, <i>in vivo</i> chromosome aberration test</p>	<p><i>In vitro</i> Negative AMES test and gene mutation study in V79 Chinese hamster cells</p> <p>Findings from the SCGE comet assay in isolated human peripheral lymphocytes and micronucleus assay in MCF-7</p>	<p><i>In vitro</i> Negative AMES test, mammalian cell transformation assay (BALB/c-3T3 clone A31-11 cells), micronucleus test (mice), Unscheduled DNA synthesis assay (rat primary hepatocytes), Chromosomal aberrations (human)</p>	<p><i>In vitro</i> Negative AMES test, gene mutation test, cytogenicity test in mammalian cells, chromosome aberrations tests</p> <p><i>In vivo</i> Negative Cytogenicity test in mice (ECHA 2020, SCCS 2021a)</p>	<p><i>In vitro</i> Negative AMES test (weak positive: TA97 (30% hamster +S9), 10% hamster or 10% and 30% rat S9), Chinese hamster lung fibroblasts for chromosome aberration ±S9, CHO cells –S9; Sister-chromatid exchanges and chromosomal</p>	<p><i>In vitro</i> Negative AMES test and chromosome aberration test in human peripheral blood lymphocytes</p> <p><i>In vivo</i> No data</p>

Avobenzene (ECHA (2021a; DEPA 2015)	Ethylhexyl triazole (ECHA (2021b; DEPA 2015)	Homosalate (SCCS 2020; ECHA 2021c)	Octinoxate (ECHA 2021e)	Octocrylene (SCCS 2021a; ECHA 2021d)	Oxybenzone (SCCP 2006a; 2021c)	PBSA (SCCP 2006b)
		cells suggest that homosalate induced DNA damage in a dose dependent manner and it is clastogenic when the cells were incubated at cytotoxic concentrations (Yazar et al. 2018; 2019)	peripheral blood lymphocytes) In vivo Negative Chromosomal aberrations in micronucleus assay in bone marrow polychromatoc erythrocytes, Cell gene mutation assay (V79, ± S9) showed a very slight increase in mutant colonies (up to 20 mg/mL)		aberrations + S9 In vivo Negative micronucleus test (mice), chromosome aberration test (rats), Drosophila (SMART)†	

† In a recently published study (Majhi et al. 2020), benzophenone-3 (1 and 5 μ M) increased DNA damage similar to that of E2 treatment in a ER α -dependent manner. Benzophenone-3 exposure caused R-loop formation in a normal epithelial cell line when ER α was introduced. R-loops and DNA damage were also detected in mammary epithelial cells of mice treated with benzophenone-3.

Carcinogenicity

No carcinogenicity data were available for avobenzene, octinoxate, octocrylene, ethylhexyltriazole, homosalate or PBSA. Oxybenzone was carcinogenic in mice (bone marrow, spleen, kidney and liver), with equivocal evidence of carcinogenicity observed in rats (brain, spinal cord, thyroid and uterus). Findings are provided in the following table.

Table 3-8. Summary of carcinogenicity studies with sunscreen ingredients

Active ingredient	Study details ^Δ	Major findings
Avobenzene	–	No data
Ethyl hexyl triazole	–	No data
Homosalate	–	No data
Octinoxate	–	No data
Octocrylene	–	No data

Active ingredient	Study details ^Δ	Major findings
Oxybenzone (SCCP 2006a; 2021c)	Mice (B6C3F1/N; $n=50/\text{sex/group}$), 0, 1000, 3000, 10000 ppm (equivalent to 113/109, 339/320, 1207/1278 mg/kg bw/day in ♂/♀) Rats (SD; $n=10/\text{sex/group}$), 0, 1000, 3000, 10000 ppm (equivalent to 58/60, 168/180, 585/632 mg/kg bw/day in ♂/♀) Two years (beginning on GD6 in ♀)	Mice: ↑ lesions in the bone marrow, spleen, and kidney of both sexes and in the liver in ♂ Rats: ↑ incidence of brain and spinal cord malignant meningiomas at 3000 ppm in ♂ and thyroid C-cell adenomas at 3000 ppm (and uterine stromal polyps at 3000 ppm in ♀ without any dose-response relationship). These findings are considered equivocal evidence of carcinogenicity.
PBSA	–	No data

Reproductive and developmental studies

A summary of reproductive and developmental toxicity studies for each sunscreen ingredient is shown in the table below.

Table 3-9. Summary of reproductive and developmental toxicity studies with sunscreen ingredients

Active ingredient	Study details ^Δ	Major findings
Avobenzone (ECHA 2021a; DEPA 2015)	Rats at 0, 250, 500 and 1000 mg/kg bw/day (oral gavage), GD 7 -16.	No treatment-related skeletal malformations were observed. One pup with two fused sternal elements was seen at LD. A slight increase of incised neural arches and sternebrae was seen at 500 mg/kg/day. The soft tissue examination displayed one fetus of the 500 mg/kg dose group with unilateral missing ovary and uterus. No effects were considered treatment related in the absence of dose dependence. In the rearing group, all measured parameters were well comparable to concurrent control group values. Maternal and developmental NOAEL: 1000 mg/kg bw/day.
	Rabbits, single dose of 500 mg/kg bw/day GD 7-19 (oral, daily)	No treatment-related effects or teratogenicity.
Octinoxate (ECHA 2021e)	Rats (Wistar); $n = 25/\text{sex/dose}$. 0, 150, 450 or 1000 mg/kg bw/day (oral). The parental (F0) generation was exposed throughout pre mating period (73 days), mating (21 days), gestation (21 days), and up to weaning of the F1 offspring (21 days). The duration of exposure for the F1 generation was similar to F0.	No adverse effects were observed on oestrous cycles, sperm and follicle parameters, mating, fertility, morphology and motility, gestation and parturition. ↓ food consumption and body weight, ↑ liver weight and hepatic cytoplasmic eosinophilia related to hepatic enzyme induction, and ↑ ulceration of the glandular stomach mucosa at HD.

Active ingredient	Study details ^Δ	Major findings
		<p>In the offspring, ↓ lactation weight gain and organ weights, and slightly delayed sexual maturation (vaginal opening and preputial separation) at HD.</p> <p>NOAEL: 450 mg/kg bw/day for fertility and reproduction parameters, and for systemic parental and developmental toxicity (Schneider <i>et al.</i> 2005, REACH).</p>
	<p>Pregnant rabbits (<i>n</i>=20/dose), 80, 200 or 500 mg/kg bw/day on GD 7–20.</p>	<p>Reproductive parameters were not affected. Except for a slight reduction of maternal and foetal weight at HD, no abnormality was found. The fetuses did not show any skeletal or visceral abnormalities. ↓ body weight at HD, but within the range of other doses and the controls.</p> <p>NOAELs: 500 mg/kg bw/day (Maternal and developmental).</p>
	<p>Rats (albino, ♀), single dose of 1000 mg/kg bw/day on GD 7–16 (oral gavage)</p>	<p>No maternal, embryotoxic or teratogenic effects were observed. No other information was provided.</p>
	<p>NTP-DART-06 (2022b) Modified one-generation study Rats (SD); <i>n</i>=26/dose; exposure through feed and/or lactation 1000, 3000, 6000 ppm (equivalent to 70 to 87, 207-418, 419-842 mg/kg/day) F₀ dams: GD6 - LD 28 F₁ offspring were exposed in utero and during lactation through postnatal day (PND) 28 and evaluated for signs of toxicity. After weaning, F₁ offspring were allocated into prenatal, reproductive performance or subchronic exposure cohorts. Exposure to test article continued in feed until necropsy on PND96, 120 or 150. F₂ offspring were exposed in utero, during lactation and postweaning until necropsy on GD21 or PND28.</p>	<p>Octinoxate did not induce overt F₀ or F₁ maternal toxicity or affected mating or pregnancy indices. Reproductive performance (fertility and fecundity), numbers of live fetuses and pups were not affected. Octinoxate exposure was not associated with any effects on fetal weight or the incidences of external, visceral, or skeletal malformations.</p> <p>Equivocal evidence of developmental toxicity was observed:</p> <p>↓ Mean pup body weight (F1) at HD</p> <p>↑ Vaginal opening (F₁) from MD</p> <p>↑ Balanopreputial separation (F₁) at HD</p> <p>NOAEL: 6000 ppm for parental systemic toxicity, fertility and reproduction performance</p> <p>NOAEL: 1000 ppm for developmental toxicity</p>
Octocrylene (SCCS 2021a; ECHA 2021d)	<p>Extended one generation reproductive toxicity study (EOGRTS), GLP Rat (Wistar); Dose: (diets) 55, 153, 534 mg/kg bw/day ♂ 58, 163, 550 mg/kg bw/day ♀</p> <p><i>n</i>= 27 or 28 /sex /dose F1: Cohort 1A: 19/sex/ dose Cohort 1B: 25/sex/dose Cohort 2A: 10/sex/ dose Cohort 2B: 10/sex/dose</p>	<p>↓ number of implantation sites and consequently a lower number of pups at HD</p> <p>↓ bodyweight of pups at HD</p> <p>No effects on male fertility and male and female reproductive parameters such as oestrus cycle, epididymal and testicular sperm parameters at all doses.</p> <p>No effects on sexual and neurodevelopmental parameters in pups.</p>

Active ingredient	Study details ^Δ	Major findings
	<p>♂: 10-week premating period, during mating up to the day of sacrifice (~ 13 weeks)</p> <p>♀: P: 10-week premating period, termination on LD 21</p> <p>F1: from weaning up to sacrifice (~ 10 weeks in Cohort 1A, ~ 13 weeks (♂) and approx. 18 weeks (♀) in Cohort 1B; ~ 8 weeks in cohort 2A)</p> <p>F2: until weaning (indirectly) (ECHA 2021d; SCCS 2021a)</p>	<p>Based on effects on parental and pup body weights, a lower number of implantation sites and lower number of pups delivered.</p> <p>NOAEL: 153/163 mg/kg bw/day for males/females for parental systemic toxicity, fertility/reproduction performance, and general and sexual development</p>
	<p>Pregnant rats (Wistar); $n = 25$/♀/dose, Dose: 0, 100, 400, 1000 mg/kg bw/day PO</p> <p>GD6–GD15; termination on GD21</p>	<p>F0: Transient salivation at HD. ↑ relative liver weight at MD and HD</p> <p>F1: No treatment related effects.</p> <p>NOAEL: ≥ 1000 mg/kg bw/day (teratogenicity)</p>
	<p>Mice (CD-1); $n = 12$ ♀/dose, Dose: 0, 100, 300, 1000 mg/kg bw/day (oral gavage); GD8–GD12; termination on LD3</p> <p>Odio <i>et al.</i> (1994)</p>	<p>No treatment related adverse effects.</p> <p>NOEL: 1000 mg/kg bw/day (mice)</p>
	<p>Rabbit (NZW); $n = 17$ ♀/dose</p> <p>Dose: 0, 65, 267 mg/kg bw/day, (Dermal, open, clipped area on the back), dosing GD6–GD18; termination on GD21</p> <p>Odio <i>et al.</i> (1994)</p>	<p>No treatment related adverse effects.</p> <p>NOEL (percutaneous): 267 mg/kg bw/day (rabbits)</p>
Ethylhexyl triazone (ECHA 2021b; DEPA 2015)	<p>Rats (wistar), Prenatal Developmental Toxicity study ($n=25$/dose). Dosing the dams 7 days/week for an unspecified period (0, 100, 400 and 1000 mg/kg bw/day).</p>	<p>No treatment-related effects reported.</p> <p>Maternal NOAEL = 1000 mg/kg bw/day;</p> <p>Developmental NOAEL = 1000 mg/kg bw/day</p>
Homosalate (SCCS 2020; ECHA 2021c)	<p>The evaluation of potential toxicity of homosalate on fertility and development was performed in a combined repeat dose toxicity study with the reproduction/developmental toxicity-screening test (described above in repeat-dose toxicity section).</p> <p>The study findings were considered as inconclusive and unreliable due to a technical error that maintained the animals under a constant light. In the context of a compliance check process under REACH, the ECHA adopted a decision in 2018 requesting a sub-chronic toxicity study, a prenatal developmental toxicity study, an extended one-generation reproductive toxicity study, and the identification of degradation products (ECHA 2018, ECHA decision CCH-D-2114386909-26-01/F). An appeal was filed against this decision; however, the Board of Appeal dismissed the appeal and decided that the information must be provided by 25 February 2024.</p>	
Oxybenzone (SCCP 2006a; 2021c)	<p>Mice (CD-1), RACB (Reproductive Assessment by Continuous Breeding): 1850, 3950, 9050 mg/kg bw/day (14 days; $n=20$/sex); 1000, 2100, 4700, 10200, 15700 mg/kg bw/day (14 weeks; $n=8$/sex)</p>	<p>No effect on fertility at doses up to 8600/9500 mg/kg bw/day in ♂/♀ mice (highest dose). Effects on reproductive performance included a slightly lower number of live pups at birth. Impaired body weight/body weight gain in pups was also observed. All effects were observed at dose levels resulting maternal toxicity including decreased bodyweight</p>

Active ingredient	Study details ^Δ	Major findings
		and premature death at doses of 1850 mg/kg bw/day. The NOAEL for systemic, reproductive and developmental toxicity was 1800/1900 mg/kg bw/day in males/females.
	Rats (F344/N; <i>n</i> =10/sex) and mice (B6C3F1; <i>n</i> =10/sex): 0, 3125, 12500, 50000 ppm (equivalent to 204, 828, 3458 mg/kg bw/day in rats and 554, 2860, 16238 mg/kg bw/day in mice); 13 weeks (dietary)	↓ Epididymal sperm counts, and decreased absolute cauda, epididymal and testis weight as a consequence of the reduced body weight in male rats and ↑ in the length of the oestrous cycle in female rats. ↓ in the epididymal sperm count and ↑ the incidence of abnormal sperm was observed in male mice, and there was an ↑ in the length of the oestrous cycle in female mice (as seen in rats). Oestrous cyclicity was not affected in either rats or mice. NOAEL for reproductive parameters was established at 828 mg/kg bw/day in rats and 2860 mg/kg bw/day in mice (SCCP 2006a).
	Rats (SD; <i>n</i> =not reported) doses up to 200 mg/kg bw/day and mice (B6C3F1; <i>n</i> = x ♂); 0, 20, 100, 400 mg/kg bw/day; 13 weeks (dermal)	No effects on selective reproduction parameters and a NOAEL was established at 200 mg/kg bw/day, the highest dose tested in rats. In mice, there were no effects on reproductive organ weight, cauda epididymal sperm concentration, sperm parameters, testicular spermatid concentration or testicular histology. NOAEL: 400 mg/kg bw/day, the highest dose tested.
	Prenatal developmental toxicity study in rats (Wistar; <i>n</i> =25 ♀), at doses of 0, 40, 200, 1000 mg/kg bw/day PO	Slight ↑ rates of fetuses/litter with skeletal variations (incomplete ossification of different skull bones and cervical arch, supernumerary 14th ribs) and therefore ↑ rates of total variations were observed at 1000 mg/kg bw/day. These effects were associated with maternal toxicity (clinical signs, reduced bodyweight and food consumption). The NOAEL was established at 200 mg/kg bw/day.
	Reproductive toxicity study in rats (SD) at doses of 3000, 10000 and 30000 ppm (equivalent to 242, 725 and 3689 mg/kg bw/day) in the diet from GD 5-15.	The maternal NOAEL was established at 3000 ppm (206-478 mg/kg bw/day) based on reduced bodyweight gain during GD 6-9 and lactation day 4-21. The developmental NOEL was established at 3000 ppm (206-478 mg/kg bw/day) based on impaired postnatal bodyweight performance at 10000 ppm (660-1609 mg/kg bw/day) (SCCS 2021c).

Active ingredient	Study details ^Δ	Major findings
	<p>Nakamura <i>et al.</i> (2015) Reproductive toxicity study in rats (SD; $n=7$-8 mated ♀); Doses: 0, 1000, 3000, 10,000, 25,000, or 50,000 ppm, equivalent to 67.9, 207.1, 670.8, 1798.3, and 3448.2 mg/kg bw/day, respectively. Treatment from GD6-PND23.</p> <p>The effects of maternal exposure during gestation and lactation on development and reproductive organs of offspring of mated female rats was examined.</p>	<p>Exposure to <10,000 ppm oxybenzone was not associated with adverse effects on the reproductive system in rats. At higher doses, a decrease in the normalised anogenital distance in male pups at PND 23, impairment of spermatocyte development in testes of male offspring, delayed follicular development in females was observed at doses of \geq207 mg/kg bw/day. The NOAEL was established at 67.9 mg/kg bw/day.</p>
	<p>Han <i>et al.</i> (2022) Reproductive toxicity study in mice (ICR; $n=13$-15 mated ♀) Doses: 0, 0.1, 10, 1000 mg/kg/day PO Treatment from GD1-GD13</p>	<p>No adverse effect on maternal body weight and the relative weights of the liver, brain and the uterus</p> <p>Slight ↑ rate of fetal loss at HD; ↑ placental thrombosis and necrosis from LD (severity not assessed)</p>
PBSA (SCCP 2006b)	<p>A prenatal developmental study (rats, $n=25$ ♀/group), treatment GD 6-15, doses: 0 and 1000 mg/kg bw/day (gavage)</p>	<p>No treatment-related findings were noted in the study.</p> <p>The NOAEL for maternal and fetal toxicity was 1000 mg/kg bw/day.</p>

Active ingredients in human milk

In a cohort study between 2004 and 2006, 54 human milk samples were analysed; UV filters were detectable in 46 samples and levels were positively correlated with the reported usage of UV filter products (Schlumpf *et al.*, 2010). Concentrations of octinoxate or ethylhexyl methoxy cinnamate (EHMC), octocrylene (OC), 4-methylbenzylidene camphor (4-MBC), homosalate (HMS) and oxybenzone (BP-3) ranged 2.10–134.95 ng/g lipid, with octinoxate/EHMC and octocrylene being most prevalent (42 and 36 positive samples, respectively) and an average of 7 positive samples for the other three (Schlumpf *et al.*, 2010). In another study, levels of oxybenzone in maternal urinary samples taken in gestational weeks 6–30 were positively correlated with the overall weight and head circumference of the baby (Philippat *et al.* 2012). These reports raise concerns about potential prenatal exposure and developmental toxicity of UV filters.

Endocrine activity modulation

Chemicals with endocrine activity modulation are exogenous chemicals that can alter hormone action, thereby potentially increasing the risk of adverse health outcomes, including cancer, reproductive impairment, cognitive deficits and obesity. In 2013, publicly available data on endocrine disruptive properties of 23 ingredients including the ingredients reviewed in this document were collected and evaluated by the Danish Centre on Endocrine Disruptors (Axelstad *et al.* 2013). The overall conclusion of the evaluation was that there were not enough data to conclude whether the ingredients have endocrine disruptive properties or not.

“In conclusion, very little is known on the endocrine disrupting potential of these 23 UV-filters. For 14 of the 23 assessed UV-filters⁸ no in vivo studies in rodents, assessing endpoint that

⁸ EHT was included in these 14 ingredients

are sensitive to endocrine disruption, have been performed, and it was therefore not possible to conclude anything on their endocrine disrupting potential, with regard to human health...

Two of these (octocrylene and butyl methoxydibenzoylmethane) showed no adverse effects in the used test systems. Seven of the UV-filters (placed in groups C & D) were tested in the Uterotrophic assay, and regardless of their estrogenic potential *in vitro*, none of them caused increased uterine weights, indicating lack of estrogenic potential *in vivo*. The three compounds in-group E⁹ were also investigated for androgen receptor (AR) agonism/antagonism *in vitro*, and the results differed somewhat depending on which type of study had been performed. However, since no *in vivo* studies investigating the anti androgenic effects of the compounds were present, it is difficult to conclude anything on their endocrine disrupting potential with regard to the possible androgenic/antiandrogenic mode of action. Information on human health endocrine disrupting potential of last two UV-filters (octocrylene and titanium dioxide) was also scarce. Since no adverse effects on testicular and epididymal morphology or on sperm quality were seen in a 90-day study of octocrylene, this UV filter did not seem to be a potent anti-androgen. Read across assessment showed possible resemblance of the chemical structures of some of the presently evaluated UV-filters to known or suspected endocrine disrupting UV-filters, however more knowledge on the endocrine disrupting potential of the presently evaluated UV-filters could be obtained by doing QSAR analyses. Unfortunately no published reports of such analysis were present in the open literature."

An extensive review in 2016 also discussed the potential endocrine disruption of typical UV filters including benzophenones (i.e. oxybenzone), camphor derivatives and cinnamate derivatives (i.e., octocrylene, Octinoxate etc.) (Wang *et al.* 2016). The review (Wang *et al.* 2016) concluded:

*"These UV filters are generally involved in the disruption of the hypothalamic–pituitary–gonadal system. As revealed by *in vivo* and *in vitro* assays, exposure to these chemicals induced various endocrine disrupting effects such as estrogenic disrupting effects, androgenic disrupting effects as well as the disrupting effects towards TR, PR. The underlying mechanism of endocrine disruption was summarized ([Table 2](#)). The minor structural changes of these kinds of UV filters have influence on the potency of their endocrine disrupting effects."*

The Table 2 (summarising the Endocrine Activity Modulation effects of the commonly used UV filters) from the Wang review is provided in the Appendix.

In a recent *in vitro* study, Rehfeld *et al.* (2018) found that the homosalate, oxybenzone, avobenzone, octinoxate and octocrylene induced Ca^{2+} influx in human sperm cells whereas ethylhexyl triazole did not. It concluded:

*"In conclusion, chemical UV filters that mimic the effect of progesterone on Ca^{2+} signaling in human sperm cells can similarly mimic the effect of progesterone on acrosome reaction and sperm penetration. Human exposure to these chemical UV filters may impair fertility by interfering with sperm function, e.g. through induction of premature acrosome reaction. Further studies are needed to confirm the results *in vivo*".*

Lee *et al.* (2022) screened octinoxate, octocrylene, avobenzone and homosalate among 35 other chemicals used in consumer products, for their ability to modulate estrogen receptor (ER) or androgen receptor (AR) *in vitro*. Octinoxate was a weak agonist of ER, while octocrylene acted both as a very weak agonist or a weak antagonist of ER, but both were negative for AR. Avobenzone and homosalate did not activate either ER or AR.

In the light of increased safety concerns regarding the Endocrine Activity Modulation potential of the active ingredients in sunscreens, in 2018, the ECHA and the European Food Safety Authority (EFSA) published "Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009 (Andersson *et al.* 2018). The Biocidal Products Regulation (EU No 528/2012; BPR) restricts approvals of the active substances considered to have endocrine

⁹ Homosalate and avobenzone were included

disruption properties, unless the risk from exposure to the active substance is shown to be negligible or unless there is evidence that the active substance is essential to prevent or control a serious danger to human health, animal health, or the environment.

A recent Consensus Statement discussed ten key characteristics (KCs) of Endocrine Activity Modulation based on hormone actions and Endocrine Activity Modulation effects, the logic behind the identification of these KCs and the assays that could be used to assess several of these KCs (la Merrill *et al.* 2020).

A systematic review assessed 29 studies that addressed the impact of oxybenzone on human health (Suh 2020). The review suggests increased systemic level of oxybenzone had no adverse effect on male and female fertility, female reproductive hormone level, adiposity, fetal growth, child's neurodevelopment and sexual maturation (Suh 2020). However, the association of oxybenzone level on thyroid hormone, testosterone level, kidney function and pubertal timing has been reported warranting further investigations to validate a true association. The health effects of an increased octinoxate level have been less extensively studied presumably. The current evidence shows that topical application of octinoxate does not have biologically significant effect on thyroid and reproductive hormone levels (Suh 2020). However, the topical application of octinoxate results in systemic absorption greater than 0.5 ng/mL, a threshold established by the FDA for waiving toxicology assessment, and therefore further drug safety assessment on octinoxate is crucial.

The review concluded that:

"To evaluate the long-term risk of exposure to BP-3 or OMC from sunscreens, a well-designed longitudinal randomized controlled trial is of high priority."

The latest SCCS opinions on these ingredients considered available information on the endocrine activity of these active ingredients and suggested inadequate evidence is available for relevant safety determination.

The key conclusions from the evidence above are given below.

Avobenzone

The Danish Centre on Endocrine Disruptors (Axelstad *et al.* 2013) evaluated publicly available data on endocrine disruptive properties of substances and based on the assessment it concluded, that there were not enough data to conclude whether avobenzone has endocrine disruptive properties or not.

Homosalate

According to Danish QSAR database, homosalate was predicted to activate the E2R (Leadscape and SciQSAR)¹⁰ and to act as an antagonist of androgen receptor (AR)(CASE Ultra and Leadscape).

The SCCS (2020) conclusion was based on a Risk Management Options Analysis (RMOA) 2016 by ANSES¹¹. As per the RMOA, *the available data from non-testing methods and in vitro assay and the inadequate in vivo studies provide indications for an ED potential of homosalate, whereas the rest of the studies were of limited relevance and do not indicate the potential for ED concern. Despite the poor quality of the in vivo studies, findings that could be linked to an endocrine disruption were identified, in particular fluctuations of hormones, sperm changes and effects on the thyroid.* These effects raised some concerns regarding ED properties of homosalate.

Therefore, the SCCS (2020) concluded:

"It needs to be noted that the SCCS has regarded the currently available evidence for endocrine disrupting properties of homosalate as inconclusive, and at best equivocal. This

¹⁰ QSAR software for modelling and predicting toxicity of chemicals. CASE Ultra has both methodologies (statistics based and expert rule based) built in for a complete ICH M7 compliant assessment. Leadscape Model Applier (Leadscape, Inc.) is a chemoinformatic platform that provides QSAR models for the prediction of potential toxicity and adverse human clinical effects of pharmaceuticals, cosmetics, food ingredients and other chemicals.

¹¹ French Agency for Food, Environmental and Occupational Health & Safety (ANSES) – See Eurometaux (2016).

*applies to all of the available data derived from *in silico* modelling, *in vitro* tests and *in vivo* studies, when considered individually or taken together. The SCCS considers that, whilst there are indications from some studies to suggest that homosalate may have endocrine effects, the evidence is not conclusive enough at present to enable deriving a specific endocrine-related toxicological point of departure for use in safety assessment.”*

Octocrylene

The endocrine activity modulation potential of octocrylene was extensively discussed in SCCS (2021a). The SCCS opinion concluded that:

*“The SCCS considers that, whilst there are indications from some *in vivo* studies to suggest that Octocrylene may have endocrine effects, the evidence is not conclusive enough at present to enable deriving a specific endocrine-related toxicological point of departure for use in safety assessment”.*

Oxybenzone

The endocrine activity modulation potential of oxybenzone was extensively discussed in SCCS (2021c). The SCCS (2020) evaluated the potential endocrine mode of action for oxybenzone (BP-3) *in vitro* and *in vivo* and endocrine-related adverse effects in humans and animals.

The SCCS concluded:

*“The currently available evidence for endocrine disrupting properties of BP-3 is not conclusive, and is at best equivocal. This applies to the data derived from *in silico* modelling, *in vitro* tests and *in vivo* studies, when considered individually or taken together. There are either contradictory results from different studies, or the reported data do not show dose-response relationship, and/or the effect are seen only at relatively very high doses that can only be considered far beyond the human exposure range. In view of this, the SCCS considers that whilst there are indications from some studies to suggest that BP-3 may have endocrine effects, it is not conclusive enough at present to enable deriving a new endocrine-related toxicological point of departure for use in safety assessment.”*

Octinoxate

Most of the available data suggest that octinoxate has an estrogenic activity, androgenic and anti-thyroid activity in rats and humans [NICNAS (currently known as AICIS), 2017; Lorigo *et al.* 2018].

Regarding the octinoxate mechanism of action, several studies showed that the effects exerted by Estradiol (E2) and octinoxate were not always totally shared and it is possible that octinoxate could act by a mechanism different from the classic E2R (α y β). There are few data regarding the anti-androgenic activity of octinoxate, and the studies suggest that octinoxate is not able to bind to androgen receptors. Studies in rats showed that octinoxate could disturb the homeostasis of the thyroid hormones by mechanisms different from the classical ones of hormone-dependent regulation and feedback.

More studies in rodents and very few in humans, suggest that an increase exposure to octinoxate could be related to infertility or changes in GnRH and disturbance of reproductive hormone levels. A public call by the European Commission for data on the endocrine activity modulation potential of ingredients used in cosmetics, including octinoxate, was undertaken from 15 February to 15 November 2021 (EU 2021).

A recent review summarises the endocrine effects of these ingredients recognising limited data availability (Fivenson 2020). This was a retrospective literature review that involved many different types of studies across a variety of species. Comparison between reports is limited by variations in methodology and criteria for toxicity.

Other studies

The photo-allergic potential of avobenzone has been extensively reviewed in several publications (Nash and Tanner 2014). However, given the mechanistic understanding and known photo-degradation of avobenzone, the findings were inconsistent. For example, the *in vitro* skin phototoxicity of cosmetic formulations containing avobenzone, other UV filters and vitamin A palmitate was assessed by two *in vitro* techniques [3T3 Neutral Red Uptake Phototoxicity Test (3T3-NRU-PT) and Human 3-D Skin Model *In Vitro* Phototoxicity Test (H3D-PT)](Gaspar *et al.* 2013). The phototoxicity potential was 'positive' for avobenzone alone and in combination with other UV filters (3T3-NRU-PT). However, when tested on a human skin model, the 'positive' results were no longer observed. It has been suggested by several studies and reviews that the photoallergic potential of avobenzone may be the result of the photoproducts formed following exposure to UV. These data suggest that photo-degradation of avobenzone forms classes of photoproducts (arylglyoxals and benzils) which have strong potential for sensitization (Karlsson *et al.* 2009).

A survey in Canada (2001-2010) indicated that the most common photoallergens were oxybenzone, octyl dimethyl para-amino- benzoic acid and avobenzone whereas the most common contact allergens were octyl dimethyl para-aminobenzoic acid, oxybenzone and sandalwood (Yap 2017).

The SCCS (SCCS 2000) stated that octinoxate did not have phototoxic potential based on one study of 10 subjects exposed to patches of octinoxate for 24 hours and then exposed to a sub-erythematous dose of UV irradiation. No further details were supplied in the SCCS report. Recent *in vitro* (3T3 viable monolayer fibroblast cultures) and *in vivo* studies indicated that octinoxate was not phototoxicity (Gomes *et al.* 2015).

A human repeated insult patch test (HRIPT) was carried out at a concentration of 2% octinoxate in 53 subjects. There was no sensitisation. Similar studies using different formulations (7.5 % octinoxate in petrolatum or 10 % octinoxate in dimethylphthalate) also did not show any adverse reaction after 24 and 48 h. In a study in 32 healthy volunteers, daily whole-body topical application of 2 mg/cm² of cream formulation without (week 1) and with (week 2) the sunscreen (octinoxate 10%) for one week was performed. Hormone changes (testosterone, oestradiol and inhibin B levels) were observed following treatment but were not considered to be biologically significant. Following 1–2 hours of application, the chemical was detected in the parent form both in plasma and in urine (more than 86 % of the applied dose).

Oxybenzone was not phototoxic in the 3T3-NRU-PT test and was not phototoxic in *S. cerevisiae* or *E. coli* *in vitro*. Oxybenzone was not phototoxic in guinea pigs *in vivo* at a concentration of 10% (oxybenzone applied to shaven and depilated skin for 30 minutes followed by irradiation (UV-A) for 60 minutes). Oxybenzone did not cause photosensitisation in rabbits *in vivo* (study details not available). Oxybenzone was not photomutagenic in the photo Ames test or an *in vitro* chromosome aberration assay in CHO cells.

Oxybenzone was tested for photobinding to human serum albumin and histidine photo-oxidation potential in a mechanistic *in vitro* test for the discrimination of the photo-allergic and photo-irritants where oxybenzone revealed no phototoxic potential (SCCP 2006a). However, in a recent study, oxybenzone was shown to cause photoallergenic reactions being second most frequent photo contact allergen among the UV filters (European photo patch test task force) (Subiabre-Ferrer *et al.* 2019).

Ethylhexyl triazole (10%) did not cause photosensitisation in guinea pigs. Separate tests with *Saccharomyces cerevisiae* and CHO cells exposed to the ethylhexyl triazole and UVA and UVB irradiation did not show any potential photomutagenic effects of ethylhexyl triazole.

Phototoxicity, photosensitisation and photomutagenicity of phenylbenzimidazole sulfonic acid was examined in the SCCP opinion on phenylbenzimidazole sulfonic acid and its salts (SCCP 2006b). Phenylbenzimidazole sulfonic acid was not a photo-irritant in mice or guinea pigs *in vivo*, or in 3T3 cells *in vitro* (Photo irritation factor of 1.4). In addition, phenylbenzimidazole sulfonic acid was not photomutagenic in the photo Ames test, a yeast gene conversion assay or an *in vitro* chromosome aberration assay in CHO cells. A few cases of photoallergic contact dermatitis reactions have been reported in the literature following use of products containing phenylbenzimidazole sulfonic acid,

however no skin reactions have been observed in dedicated patch tests studies in human volunteers at concentrations up to 10%, with or without irradiation (SCCP 2006b).

The incidence of positive reactions (0.08%) was reported in a recent patch study among patients administered with octocrylene at 10% in petrolatum ($n = 2577$) (Uter *et al.* 2017). Similar findings were reported in an EU multicentre photopatch test study where contact allergy was reported in only 0.7% of the 1031 patients patch tested with 10% octocrylene in petrolatum for suspected photoallergic contact dermatitis (Klimova *et al.* 2015).

Contact allergy to octocrylene appears to be more frequent and severe in children (EMCPPTSA 2012; Gilaberte and Carrascosa 2014) whereas photoallergic contact dermatitis to octocrylene was found to be much more frequent in adults (NICNAS 2017). Photocontact allergy to octocrylene was reported in 4% of the 1031 adult patients patch-tested for suspected photoallergic contact

dermatitis (EMCPPTSA 2012). The occurrence of photoallergic contact dermatitis to octocrylene was found to be related to a previous photoallergy to topical ketoprofen (Loh and Cohen 2016). Patients with photoallergic contact dermatitis caused by sunscreens and positive photopatch tests to octocrylene have been mainly reported in France, Belgium, Italy and Spain, countries in which topical ketoprofen is used regularly in consumer products (de Groot and Roberts 2014). This was confirmed in a recent study conducted in Italy where concomitant photocontact allergy to ketoprofen was reported in 61.5% of 156 patients (Romita *et al.* 2018). A very recent review has evaluated these findings extensively (Berardesca *et al.* 2019).

Several hypotheses were proposed to illustrate the mechanism for the co-reactivity of octocrylene namely: (i) the role of the benzophenone moiety of ketoprofen (although the benzophenone moiety is not part of the octocrylene structure, aminolysis and hydrolysis of octocrylene in the skin may result in the formation of benzophenone which then can lead to cross-reactivity); (ii) hyper-photo susceptibility to ingredients that are nonrelevant allergens; and (iii) co-reactivity – i.e. concomitant sensitization or prior or subsequent *de novo* photosensitisation – may be involved in place of cross-reaction.

The presence of sensitizing impurities in some commercial batches of octocrylene were also suspected to be allergens contributing to photocontact allergy (Aerts *et al.* 2016).

Neurotoxic effects of active ingredients in sunscreens were reviewed extensively (Ruszkiewicz *et al.* 2017). The table listing the effects from the treatment of octinoxate, oxybenzone and octocrylene is shown below. However, this is not reviewed in this discussion elaborately as similar mechanisms apply on endocrine activity modulation potential of these ingredients (Ruszkiewicz *et al.* 2017).

Obesogenic potential of avobenzone was demonstrated *in vitro* by Shin *et al.* (2020) and Ahn *et al.* (2019). In normal human epidermal keratinocytes, avobenzone (10 μ M) increased expression of genes associated with lipid metabolism, including peroxisome proliferator-activated receptor γ (PPAR γ) and promoted adipogenesis in human bone marrow mesenchymal stem cells ($EC_{50} = 14.1$ μ M). Nevertheless, avobenzone did not bind PPAR γ and the avobenzone-induced adipogenesis-promoting activity was not affected by PPAR γ antagonists (Ahn *et al.* 2019). Even though potential obesogenic effect in human subject cannot be unequivocally excluded, it is unlikely given that mean C_{max} (12.89 nM or 4 μ g/L; see [Clinical Trials](#)) of avobenzone following a dermal application was ~1000 lower than concentrations promoting adipogenesis *in vitro*.

Similarly, obesogenic potential of octocrylene was postulated by Ko *et al.* (2022), but in contrast to avobenzone, octocrylene directly bound PPAR γ , although with a relatively low affinity ($K_i = 37.8$ μ M). *In vitro* octocrylene induced ($EC_{50} = 29.6$ μ M) adiponectin secretion by human bone marrow mesenchymal stem. However, like avobenzone, the obesogenic impact of octocrylene applied dermally is not expected, as mean plasma C_{max} of (32 nM or 11.7 μ g/L; see [Clinical Trials](#)) was 925 lower than the EC_{50} of adiponectin secretion *in vitro*.

The immunomodulatory effect of avobenzone was reported *in vitro*. At 50 μ M the compound increased IL-8 secretion by monocyte-like THP-1 cells as well as by THP-1 derived macrophages (Weiss *et al.* 2023). However, the immunomodulatory effect of avobenzone in sunscreen applications is not predicted considering low systemic exposures ($C_{max} = 12.89$ nM) and relatively low impact *in*

vitro (fold changes of affected factors were generally < 2) at concentrations exceeding C_{max} ~4000 times.

Table 0-30 Summaries of other studies

Compound	Exposure model	Experimental design	Effect
Octyl methoxybenzene or octinoxate	Wistar rats	Oral (gavage) administration during gestation and lactation	Decreased motor activity in female offspring, increased spatial learning in male offspring.
	Sprague-Dawley rats, female	Oral (gavage) administration for 5 days; 10–1000 mg/kg/day	Non-estrogenic interference within the rodent HPT axis; no changes in pre-proTRH mRNA in mediobasal-hypothalamus.
	Wistar rats	In vitro incubation of hypothalamus isolated from adult rats; 60 min; 0.263 μ M	Decreased hypothalamic release of GnRH. Increased GABA release and decreased Glu production in males. Decreased Asp and Glu production in females.
	Wistar rats	In vitro incubation of hypothalamus isolated from immature rats; 60 min; 0.263 μ M	Decreased hypothalamic release of LHRH. Increased GABA release in males, decreased Asp and Glu levels in females.
	SH-SY5Y neuroblastoma cell line	72 h; 10 ⁻⁸ –10 ⁻⁴ M	Decreased cell viability and increased caspase-3 activity.
	Rainbow trout (Cahova <i>et al.</i> 2023)	Administered with food; 6 weeks; 6.9 – 395 μ g/kg/day	Increased plasma thyroxine levels at 395/kg/day (~325 ng/mL) c.f. controls (~200 ng/mL)
	Wistar rats (Lorigo and Cairrao 2022)	<i>In vitro</i> ; isolated rat aortas 0.001–50 μ mol/L	Increased vasorelaxant effect by endothelium-dependent mechanisms
Benzophenone-3 or oxybenzone	Human umbilical arteries (Lorigo <i>et al.</i> 2021, 2022)	<i>In vitro</i> , 24h incubation; 1–50 μ mol/L	Decreased vasorelaxation response by interference with NO/sGC/cGMP/PKG pathway Increased reactivity to the contractile agents – serotonin, histamine and KCl In silico analysis suggests that octinoxate might compete with T3 for the binding centre of THR α .
	Zebrafish	Waterborne; 14 days for adult, 120 h for embryos; 10–600 μ g/L	Anti-androgenic activity: decreased expression of <i>esr1</i> , <i>ar</i> and <i>cyp19b</i> expression in the brain of males.
	Zebrafish (Babich <i>et al.</i> 2020)	Embryonic oxygen consumption rate; 0.004 – 4 mg/L	Negligible effect on mitochondrial respiration

Compound	Exposure model	Experimental design	Effect
	Zebrafish (Xu <i>et al.</i> 2021)	Waterborne; 0.056 - 38 µg/L 42 days post fertilization	Decreased female to male ratio from 2.3 µg/L Increased expression of estrogen receptors <i>esr2a</i> and <i>vtg2</i> in the brain and hepatic <i>vtg2</i> at HD
	Zebrafish (Bai <i>et al.</i> 2023)	Waterborne; 6 h post fertilisation to adulthood(~5months); 10 µg/mL (0.04 µM)	Reduced social aggression, learning and memory in ♀; cognition deficits in ♀ correlated with neurotoxicity and increased brain cell apoptosis. Reduced social preference in ♂ and ♀.
	Sprague-Dawley rats	Dermal application; 30 days; 5 mg/kg/day	No changes in behavioural tests (locomotor and motor co-ordination).
	Rat primary cortical astrocytes and neurones	1–7 days; 1–10 µg/mL	Decreased cell viability of neurons but not of astrocytes.
	Kumming (KM) mice (Zhang <i>et al.</i> 2021)	<i>In vitro</i> ; Sertoli cells; 24 h; 5-150 µM	Impaired cell viability and disturbed cell morphology from 100 µM and increased Bcl-2 levels. Reduced expression of Rictor (component of mTORC2 complex) from 50 µM
	SH-SY5Y neuroblastoma cell line	72 h; 10 ⁻⁸ –10 ⁻⁴ M	Decreased cell viability and increased caspase-3 activity.
Octocrylene	Zebrafish	Waterborne; 14 days; 22–383 µg/L	Impaired expression of genes related with development and metabolism in the brain.
	Zebrafish (Meng <i>et al.</i> 2021)	96 h incubation; hatching rates of zebrafish (50-250µM) 96 h incubation; larvae death and zebra fish liver cell line (ZFL) – concentration range not reported.	Impaired hatching from 200 µM and increased larvae death (LC ₅₀ = 251.8 µM) Increased cytotoxicity (96 h LC ₅₀ = 5.5 µM) and expression of <i>cyp1a</i> , <i>cyp3a65</i> , estrogen receptors (<i>era</i> , <i>erβ1</i> , <i>gper</i> , <i>vtg1</i>) and sex determination genes (<i>brca2</i> , <i>drtm1</i> , <i>cyp19a</i> <i>sox9a</i>) in ZFL at 10% LC ₅₀
	ICR mice (Chang <i>et al.</i> 2022)	<i>In vitro</i> ; oocytes incubated until maturation; 8-50 nM	Disturbed meiotic maturation and reduced oocyte quality from 40 nM, likely due to impaired mitochondrial function.
	Human bone marrow mesenchymal stem cells (Ko <i>et al.</i> 2022)	<i>In vitro</i> ; 72h; concentration range was not reported	Octocrylene directly binds to PPAR γ with K _i = 37.8 µM and acts as a partial agonist

Compound	Exposure model	Experimental design	Effect
			Increased adipogenesis and secretion of adiponectin ($EC_{50} = 29.6 \mu M$).

Abbreviations: ar: androgen receptor; Asp: aspartate; cyp19b: cytochrome P450 aromatase b; esr1: estrogen receptor; GABA: gamma amino butyric acid; Glu: glutamate; GnRH: gonadotrophin-releasing hormone; HPT: hypothalamo-pituitary-thyroid; pre-proTRH: pre-pro-thyrotrophin-releasing hormone.

NOAEL and DA values for risk assessment

Based on the information/data reviewed above, the TGA has concluded on the following NOAEL and dermal absorption values for risk assessment of the respective sunscreen active ingredients.

Table 3-11. NOAEL selected from available information.

Active ingredient	Study details ^Δ	Major findings
Avobenzone	450 mg/kg bw/day	Oral 13-week repeat dose toxicity study in rats. (ECHA 2021)
Ethylhexyl triazone	1000 mg/kg bw/day	Oral 90 day repeat dose toxicity study in rats. (ECHA 2021b; DEPA 2015).
Homosalate	10 mg/kg bw/day	Based upon a LOAEL of 60 mg/kg bw/day from combined repeat dose toxicity study and reproduction/developmental toxicity screening test. Uncertainty factor of 3 applied for conversion of LOAEL to NOAEL. A further adjustment made (50% reduction) due to absence of oral bioavailability data consistent with SCCS approach.
Octinoxate	450 mg/kg bw/day	Fertility and reproduction oral study in rats (Schneider <i>et al.</i> 2005).
Octocrylene	76.5 mg/kg bw/day	Extended one generation reproductive toxicity study (EOGRTS) in rats via diet. Adjustment of (50%) based on oral bioavailability data made to male NOAEL of 153 mg/kg bw/day, consistent with SCCS approach. (ECHA 2021d; SCCS 2021a).
Oxybenzone	67.9 mg/kg bw/day	Reproductive and developmental toxicity studies in rats via diet (Nakamura <i>et al.</i> 2015).
PBSA	40 mg/kg bw/day	Oral 90-day repeat dose/reproduction/developmental toxicity study in rats. Adjustment made to NOAEL (1000 mg/kg bw/day to account for 4% oral absorption. (ECHA 2020).

Table 3-12. Dermal absorption factor selected from available information.

Active ingredient	DA	Rationale
Avobenzone	7.3%	Based upon <i>in vitro</i> study using isolated human abdominal cadaver skin (ECHA 2021a).

Active ingredient	DA	Rationale
Ethylhexyl triazone	10%	Based upon physicochemical properties, (molecular weight > 500 and a logP _{ow} > 4).
Homosalate	5.3%	Based upon dermal absorption (mean +1SD) derived from study using human split thickness skin preparations (Finlayson 2021, as cited in SCCS 2020).
Octinoxate	1.77 µg/cm ²	Based upon 6-hour pig ear skin exposure + 18-h free permeation of oil-in-water emulsion study (Klimova <i>et al.</i> 2015)
Octocrylene	0.97 µg/cm ²	Based upon dermal absorption (mean +1SD) derived from study using dermatomized human skin preparations (Fabian and Landsiedel 2020, as cited in SCCS 2021a).
Oxybenzone	9.9%	Based upon <i>in vitro</i> study using pig skin and applying a safety factor of 2 standard deviations to account for limitations in the data set, i.e, mean (3.1%) + 2 SD (2 x 3.4%) dermal absorption study consistent with SCCS. (SCCS 2021c).
PBSA	0.416 µg/cm ²	Based upon <i>in vivo</i> study in humans (SCCP 2006b).

APPENDIX

Search strategy

Search criteria (word input)

Keywords included the chemical name, AAN or the INCI names, and “sunscreen” were used as the search items. Publications in last 15 years were searched (between 2008 and March 2023). Following toxicological endpoints were included.

Nonclinical (toxicology) data:

- Dermal carcinogenicity
- Systemic carcinogenicity
- Developmental and reproductive toxicity (DART)
- Toxicokinetics
- Additional testing when data suggest a concern about other long-term effects, such as **endocrine effects**

Clinical data:

- Dermal irritation and sensitization
- Phototoxicity and photoallergenicity testing
- Human maximal use bioavailability studies

*Websites searched for the sunscreen active ingredients:*WHO

USA:

- PubChem <https://pubchem.ncbi.nlm.nih.gov>
- [GOLD FFX database](#) / ChemWatch (TGA subscribed)
- FDA
- US EPA (www.epa.gov).
- NIOSH CDC <https://www.cdc.gov/niosh/index.htm>
- National Center for Toxicological Research (NCTR) <https://ntp.niehs.nih.gov/nctr/>
- National Toxicology program (NTP), U.S. Department of Health and Human Services <https://ntp.niehs.nih.gov/publications/index.html>.
- BUND (Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety)
- Comparative Toxicogenomics Database <http://ctdbase.org/>
- Consumer Product Information Database (cpid) <https://www.whatsinproducts.com/>. similar to and linked to PubChem.
- US EPA (United States Environmental Protection Agency) IRIS Assessments https://cfpub.epa.gov/ncea/iris_drafts/atoz.cfm
- Integrated Risk Information System (IRIS) <https://www.epa.gov/iris>
- ChemView <https://chemview.epa.gov/chemview/>
- Science Inventory <https://cfpub.epa.gov/si/>

UK:

- Cancer Research UK <https://www.cancerresearchuk.org/>

EU:

- [Registered substances](#) - Chemical property data search / European Chemicals Agency (ECHA)
- Scientific Committee on Consumer Safety (SCCS), European Commission <https://op.europa.eu/en/>
- SafetyNL; National Institute for Public Health and the Environment (RIVM), The Netherlands www.rivm.nl
- Cosmetic Database <https://cosmeticseurope.eu/library/>
- European Medicines Agency (EMA)
- OECD OECD Existing Chemicals Database <https://hpvchemicals.oecd.org>
- Environmental Protection Agency in Denmark www.mst.dk
- Nature Agency in Denmark www.nst.dk
- Swedish Chemicals Agency (KEMI) in Sweden www.kemi.se
- Environment Agency in Norway www.miljodirektoratet.no
- ANSES in France www.anses.fr

- The Environment Agency in the UK www.environment-agency.gov.uk
- ChemSec - International Chemical Secretariat www.chemsec.org
- Information Centre for Environment and Health www.forbrugerkemi.dk
- National Institute for Public Health and the Environment <https://www.rivm.nl/en>

Australia:

- NICNAS
- Safe Work Australia - Hazardous Chemical Information System (HCIS) <http://hcis.safeworkaustralia.gov.au/>
- FSANZ

Canada:

- [DRUGBANK](#) / University of Alberta et al., Canada
- [Health Canada](#)

Non-Government:

- Environmental Working Group <https://www.ewg.org/> (non-profit)
- Food Packaging Forum <https://www.foodpackagingforum.org/>
- International Toxicity Estimates for Risk (ITER) <http://www.ITER.tera.org/>. similar to PubChem.

Cosmetic Ingredient Review (CIR) <https://www.cir-safety.org/>

Table 2: List of endocrine activity modulation effects of commonly used UV filters

UV Filters	Endocrine disrupting effects	
Benzophenones	Estrogenic disrupting effects	Activation of ER α , ER β ; Inhibition of the activity of 17 β -Estradiol; Induction of proliferation of MCF-7 cell; Induction of VTG in fathead minnow; Reduction of the uterine weight in immature Long-Evans rats.
	Androgenic disrupting effects	Antagonists of human AR transactivation; Repression of 4,5-dihydrotestosterone-induced transactivational activity; Inhibition of testosterone formation in mice and rats.
	Disrupting effects toward other nuclear receptors	Inhibition of human recombinant TPO; Interference with THR; Inhibition of TPO activity in rats; Antagonists of PR
Camphor derivatives	Disrupting effects toward estrogen receptor	Activation of ER α , ER β ; Inhibition of the activity of 17 β -Estradiol; Inhibition of testosterone formation in HEK-293 cells; Antagonist of Human AR.
	Disrupting effects toward androgen receptor	Repression of 4,5-dihydrotestosterone-induced transactivational activity; Inhibition of testosterone formation in HEK-293 cells; Antagonists of Human AR.
	Disrupting effects toward estrogen receptor	Antagonists of PR; Increase of PR mRNA levels in rats; Inhibition of the expression of PR protein in rats; Disturbance of the expression of membrane-associate PR in insects.
Cinnamate derivatives	Disrupting effects toward estrogen receptor	Activation of ER α ; Inhibition of the activity of 17 β -Estradiol; Induction of proliferation of MCF-7 cell; Reduction of uterine weight in rats; Induction of VTG in fish.
	Disrupting effects toward thyroid hormone receptor	Decrease of T4 levels; Inhibition of the conversion of T4 to triiodothyronine in rats.
	Disrupting effects toward other nuclear receptors	Antagonists of PR and AR; Inhibition of 4,5-dihydrotestosterone activity; Reduction of prostate and testicular weight in rats.

AR: androgen receptor; ER: estrogen receptor alpha; PR: progesterone receptor; T4: thyroxine; THR: thyroid hormone receptor; TPO: thyroid peroxidase; VTG: vitellogenin.

Source: Wang *et al.*, 2016

BIBLIOGRAPHY

Aerts O., Goossens A., Bervoets A., Lambert J. (2016). Almost missed it! Photocontact allergy to octocrylene in a ketoprofen-sensitized subject. *Dermatitis*. 27: 33–34.

Ahn S., An S., Lee M., Lee E., Pyo J.J., Kim J.H. et al. (2019). A long-wave UVA filter avobenzone induces obesogenic phenotypes in normal human epidermal keratinocytes and mesenchymal stem cells. *Arch. Toxicol.* 93: 1903–1915.

Andersson N., et al. (2018). Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. *EFSA Journal*. 16(6): e5311.

Australian/New Zealand Standard (AS/NZS) 2604:2021 Sunscreen products – Evaluation and classification. Retrieved from <https://store.standards.org.au/product/as-nzs-2604-2021>

Avenel-Audran M., Dutartre H., Goossens A., et al. (2010). Octocrylene, an emerging photoallergen. *Arch. Dermatol.* 146: 753–757.

Axelstad M., et al. (2011). Effects of pre- and postnatal exposure to the UV-filter Octyl Methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring. *Toxicol. Applied Pharmacol.* 250: 278–290.

Axelstad M., et al. (2018). EDC IMPACT: reduced sperm counts in rats exposed to human relevant mixtures of endocrine disrupters. *Endocr. Connect.* 7: 139–148.

Axelstad M., Hass U., Kinnberg K.L., Bjerregaard P. (2013). Assessment of the endocrine disrupting potential of 23 UV-filters. Danish Centre on Endocrine Disrupters. Retrieved from http://www.cend.dk/files/UV-filter-rapport-28022013_40s388pi.pdf

Babich R., Hamlin H., Thayer L., Dorr M., Wei Z., Neilson A. et al. (2020). Mitochondrial response and resilience to anthropogenic chemicals during embryonic development. *Comp. Biochem. Physiol. C. Toxicol. Pharmacol.* 233: 108759.

Bai C., Dong H., Tao J., Chen Y., Xu H., Lin J., Huang C., Dong Q. (2023). Lifetime exposure to benzophenone-3 at an environmentally relevant concentration leads to female-biased social behavior and cognition deficits in zebrafish. *Sci Tot Environ* 857 Part 3, 159733.

Barr L., Alamer M., Darbre P.D. (2018). Measurement of concentrations of four chemical ultraviolet filters in human breast tissue at serial locations across the breast, *J. Appl. Toxicol.*; 38(8) 1112-1120.

BASF (1995). Penetration of Uvinul T 150 (5 % in a Sunscreen Formulation) through Human Epidermis in vitro. Amendment No. 1. to the Report, BASF. Department of Toxicology, 79 pp. Retrieved from <http://www.fda.gov/ohrms/dockets/dailys/04/july04/070804/03n-0233-sup0002-018-tab-16-vol3.pdf>

Berardesca E., et al. (2019). Review of the safety of octocrylene used as an ultraviolet filter in cosmetics. *J. Eur. Acad. Dermatol. Venereol.* 33(Suppl 7): 25–33.

Bremmer H.J., Prud'homme L.C.H., & van Engelen J. (2006). General fact sheet - Limiting conditions and reliability, ventilation, room size, body surface area. Updated version for ConsExpo 4. RIVM report 320104002/2006.

Bury D., et al. (2019). Urinary metabolites of the UV filter octocrylene in humans as biomarkers of exposure. *Arch. Toxicol.* 93(5): 1227-1238.

Cahova J., Blahova J., Mares J., Hodkovicova N., Sauer P., Kroupova H.K. et al. (2023). Octinoxate as a potential thyroid hormone disruptor - A combination of in vivo and in vitro data. *Sci. Total Environ.* 856: 159074.

Cancer Council Australia – CCA (2017). About SPF50+ sunscreen. <https://www.cancer.org.au/cancer-information/causes-and-prevention/sun-safety/about-sunscreen/spf50-sunscreen>

Chang H., Li J., Zhang C., & Qian W. (2022). Octocrylene exposure impairs mouse oocyte quality by inducing spindle defects and mitochondria dysfunction. *Toxicology* 479: 153306.

Cosmetic Ingredient Review (2019). Amended Safety Assessment of Salicylic Acid and Salicylates as Used in Cosmetics. Retrieved from <https://www.cir-safety.org/sites/default/files/salicy042019FAR.pdf>

Cosmetic Toiletry and Fragrance Association – CTFA (2005). *In vitro* percutaneous absorption of [14C]-Homosalate through viable rat and human skin membranes using 41 flow-through diffusion cells, TNO Report No. V6433, TNO Quality of Life, Physiological 42 Sciences, Zeist, Netherland, unpublished data, 5 September 2005.

Danish Environmental Protection Agency – DEPA (2015). Survey and health assessment of UV filters. Retrieved from <https://www2.mst.dk/Udgiv/publications/2015/10/978-87-93352-82-7.pdf>

de Groot A.C., and Roberts D.W. (2014). Contact and photocontact allergy to octocrylene: a review. *Contact Derm.* 70: 193–204.

Downs C.A., DiNardo J.C., Stien D., Rodrigues A.M.S. and Lebaron P. (2021). Benzophenone Accumulates over Time from the Degradation of Octocrylene in Commercial Sunscreen Products. *Chem. Res. Toxicol.* 34: 1046–1054.

Ebert K.E., Griem P., Weiss T., Brunining T., Hayen H., Koch H.M. et al. (2022). Diastereoselective metabolism of homomethyl salicylate (homosalate): Identification of relevant human exposure biomarkers. *Environ. Int.* 170: 107637.

Eurometaux (2016). European Association of Metals. Guidelines for an Industry Risk Management Options Analysis (RMOA). Retrieved from <https://www.reach-metals.eu/reach/em-guidance-documents-and-tools/rmoa-guidance>

European Chemicals Agency – ECHA (2020). Octocrylene Registration Dossier. Retrieved from <https://echa.europa.eu/fr/registration-dossier/-/registered-dossier/14858/7/2/1>

European Chemicals Agency – ECHA (2021a). 1-[4-(1,1-dimethylethyl)phenyl]-3-(4-methoxyphenyl)propane-1,3-dione (avobenzone) registration dossier. Retrieved from <https://echa.europa.eu/registration-dossier/-/registered-dossier/14835/1>

European Chemicals Agency – ECHA (2021b). Tris(2-ethylhexyl)-4,4',4''-(1,3,5-triazine-2,4,6-triyltriamino)tribenzoate (Ethylhexyl triazone) registration dossier. Retrieved from <https://echa.europa.eu/registration-dossier/-/registered-dossier/14255/7/2/1>

European Chemicals Agency – ECHA (2021c). Homosalate registration dossier. Retrieved from <https://echa.europa.eu/el/registration-dossier/-/registered-dossier/13246>

European Chemicals Agency – ECHA (2021d). Octocrylene registration dossier. Retrieved from <https://echa.europa.eu/registration-dossier/-/registered-dossier/14858/7/6/1>

European Chemicals Agency – ECHA (2021e). 2-ethylhexyl 4-methoxycinnamate (octinoxate). Retrieved from <https://echa.europa.eu/substance-information/-/substanceinfo/100.024.341>

European Commission – EC (2006). Recommendation on the efficacy of sunscreen products and the claims made relating thereto. 2006/647/EC. Off. J. Eur. Comm. L 265, 39e43. Retrieved from <https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:265:0039:0043:en:PDF>

European Commission – EC (2021). Call for data on ingredients with potential endocrine-disruption properties used in cosmetic products. 15 February 2021. Retrieved from <https://ec.europa.eu/newsroom/growth/items/702447/en>

European Multicentre Photopatch Test Study Taskforce – EMCPPPTSA (2012). European multicentre photopatch test study. *Br. J. Dermatol.* 166: 1002–1009.

European Parliament and the Council (2009). Regulation (EC) No 1223/2009 of the European Parliament and the Council of 30 November 2009 on cosmetic products: Reg. (EC) 1223/2009ECHA (2018) ECHA decision on a compliance check for homosalate, March 2018, CCH-D-2114386909-26-01/F.

Fabian E., & Landsiedel R. (2020). ¹⁴C-Octocrylene in a cosmetic formulation, Study of penetration through human skin in vitro. BASF SE laboratory. Project identification no. 10B0614/07B00

Fennell T., et al. (2018). Metabolism and disposition of 2-ethylhexyl-p-methoxycinnamate following oral gavage and dermal exposure in Harlan Sprague Dawley rats and B6C3F1/N mice and in hepatocytes in vitro. *Xenobiotica*. 48: 1142-1156.

Finlayson Z. (2021). The In Vitro Percutaneous Absorption of [14C] Homosalate in a Cosmetic Formulation Through Human Split Thickness Skin according to OECD Guideline 428, SCCS/1358/10. Charles River Laboratories Edinburgh Ltd. Test Facility Study No. 786915.

Fivenson, D., Sabzevari, N., Qiblawi, S., Blitz, J., Norton, B. B., & Norton, S. A. (2020). Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. *International journal of women's dermatology*, 7(1), 45–69.

Freitas J.V., Praca F.S.G., Bentley M.V.L.B., Gaspar L.R. (2015). Trans-resveratrol and beta-carotene from sunscreens penetrate viable skin layers and reduce cutaneous penetration of UV-filters. *Int. J. Pharm.* 484: 131–137.

Gaspar L.R., et al. (2013). Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate. *Toxicol. in Vitro*. 27: 418–425.

Gilaberte Y., & Carrascosa J. M. (2014). Sun protection in children: realities and challenges. *Actas Dermosifiliogr (English Edition)*. 105: 253–262.

Gilbert E., et al. (2013). Commonly used UV filter toxicity on biological functions: review of last decade studies. *Int. J. Cosmet. Sci.* 35: 208-219.

Gomes Benevenuto C., et al. (2015). Combination of retinyl palmitate and UV-filters: phototoxicity risk assessment based on photostability and in vitro and in vivo phototoxicity assays. *Eur. J. Pharm.* 68:127-136.

Guesmi A., et al. (2020). *In vitro* metabolism of sunscreen compounds by liquid chromatography/high-resolution tandem mass spectrometry. *Rapid Commun. Mass. Spectrom.* 34: e8679.

Han X., Lu T., Hu Y., Duan J., Guan Y., Huang X. et al. (2022). A metabolomic study on the effect of prenatal exposure to Benzophenone-3 on spontaneous fetal loss in mice. *Ecotoxicol. Environ. Saf.* 233: 113347.

Hayden C.G.J., Cross S.E., Anderson C., Saunders N.A., & Roberts M.S. (2005). Sunscreen penetration of human skin and related keratinocyte toxicity after topical application. *Skin Pharmacol. Physiol.* 18: 170–174.

Hazardous Substances Data Bank (HSDB). Accessed from <https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm>

Hiller J., et al. (2019). Systemic availability of lipophilic organic UV filters through dermal sunscreen exposure. *Environ. Int.* 132: 105068.

Hojerová J., Peráčková Z., & Beránková M. (2017). Margin of safety for two UV filters estimated by in vitro permeation studies mimicking consumer habits: Effects of skin shaving and sunscreen reapplication. *Food Chem. Toxicol.* 103: 66–78.

Huang Y., et al. (2019). Fate of UV filter Ethylhexyl methoxycinnamate in rat model and human urine: Metabolism, exposure and demographic associations. *Sci Tot Environ.* 686: 729-736.

Huang Y., et al. (2021). Risks of organic UV filters: a review of environmental and human health concern studies, *Sci Tot Environ.* 755, Part 1, 2021, 142486,

Janjua N.R., et al. (2004). Systemic Absorption of the Sunscreens Benzophenone-3, Octyl-Methoxycinnamate, and 3-(4-Methyl-Benzylidene) Camphor After Whole-Body Topical Application and Reproductive Hormone Levels in Humans. *J. Invest. Dermatol.* 123: 57–61.

Jung W., Seok S.H., Shin S., Ryu S.H., Kim K.B., Shin B.S. et al. (2022). Toxicokinetics, Percutaneous Absorption and Tissue Distribution of Benzophenone-3, an UV Filtering Agent, in Rats. *Toxics* 10: 672.

Kariagina A., Morozova E., Hoshyar R., Auperlee M.D., Borin M. A., Haslam S.Z., Schwarts R. C. (2020). Benzophenone-3 promotion of mammary tumorigenesis is diet dependent. *Oncotarget* 11(48): 4465-4478.

Karlsson I., et al. (2009). Photodegradation of dibenzoylmethanes: potential cause of photocontact allergy to sunscreens. *Chem. Res. Toxicol.* 22: 1881–1892.

Klimova Z., et al. (2015). Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens In vitro study mimicking real-life consumer habits. *Food Chem. Toxicol.* 83: 237-250.

Ko H., An S., Ahn S., Park I.G., Gong J., Hwang S.Y. et al. (2022). Sunscreen filter octocrylene is a potential obesogen by acting as a PPAR γ partial agonist. *Toxicol. Lett.* 355: 141–149.

La Merrill M.A., Vandenberg L.N., Smith M.T., et al. (2020). Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. *Nat. Rev. Endocrinol.* 16: 45–57.

Lee H., Park J., & Park K. (2022). Effects of consumer products chemicals ingredients and their mixtures on the estrogen receptor/androgen receptor transcriptional activation. *Chemosphere* 302: 134866.

Loh T.Y., & Cohen P.R. (2016). Ketoprofen-induced photoallergic dermatitis. *Indian J. Med. Res.* 144: 803–806.

Lorigo M., et al. (2018). Photoprotection of ultraviolet-B filters: Updated review of endocrine disrupting properties. *Steroids.* 131: 46-58.

Lorigo M., & Cairrao E. (2022). UV-B filter octylmethoxycinnamate-induced vascular endothelial disruption on rat aorta: In silico and in vitro approach. *Chemosphere* 307: 135807.

Lorigo M., Quintaneiro C., Breitenfeld L., & Cairrao E. (2021). UV-B Filter Octylmethoxycinnamate Alters the Vascular Contractility Patterns in Pregnant Women with Hypothyroidism. *Biomedicines* 9: 115.

Lorigo M., Quintaneiro C., Breitenfeld L., & Cairrao E. (2022). UV-B Filter Octylmethoxycinnamate Is a Modulator of the Serotonin and Histamine Receptors in Human Umbilical Arteries. *Biomedicines* 10: 1054.

Ma J., Yang B., Hu X., Gao Y., & Qin C. (2023). The binding mechanism of benzophenone-type UV filters and human serum albumin: The role of site, number, and type of functional group substitutions. *Environ. Pollut.* 324: 121342.

Majhi P.D., et al. (2020). Effects of benzophenone-3 and propylparaben on estrogen receptor-dependent R-loops and DNA damage in breast epithelial cells and mice. *Environ. Health Perspect.* 128: 017002-1-15.

Matta M.K., Zusterzeel R., Pilli N.R., et al. (2019). Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients: a randomized clinical trial. *JAMA*. 321(21): 2082-2091.

Matta, M. K., Florian, J., Zusterzeel, R., Pilli, N. R., et al. (2020). Effect of Sunscreen Application on Plasma Concentration of Sunscreen Active Ingredients: A Randomized Clinical Trial. *JAMA*, 323(3), 256–267.

Meng Q., Yeung K., & Chan K.M. (2021). Toxic effects of octocrylene on zebrafish larvae and liver cell line (ZFL). *Aquat. Toxicol.* 236: 105843.

Montenegro L., et al. (2011). Vehicle effects on in vitro release and skin permeation of octylmethoxycinnamate from microemulsions. *Pharmaceutical Nanotechnology*. 405: 162-168.

Montenegro L., Turnaturi R., Parenti C., & Pasquinucci L. (2018). In Vitro Evaluation of Sunscreen Safety: Effects of the Vehicle and Repeated Applications on Skin Permeation from Topical Formulations. *Pharmaceutics*. 10(1): 27.

Monti D., et al. (2008). Skin permeation and distribution of two sunscreens: a comparison between reconstituted human skin and hairless rat skin. *Skin Pharmacol. Physiol.* 21: 318e325.

Nakamura N., et al. (2015). Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat offspring. *Birth Defects Res.* 104: 35-51.

Nash J.F., & Tanner P.R. (2014). Relevance of UV filter/sunscreen product photostability to human safety. *Photodermatol. Photoimmunol. Photomed.* 30: 88-95.

National Industrial Chemicals Notification and Assessment Scheme – NICNAS (2017). 2-Propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl ester: Human health tier II assessment. Retrieved from 2-Propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl ester. Human health tier II assessment. Retrieved from https://www.industrialchemicals.gov.au/sites/default/files/2-Propenoic%20acid%2C%203-%284-methoxyphenyl%29-%2C%202-ethylhexyl%20ester_Human%20health%20tier%20II%20assessment.pdf

National Toxicology Program – NTP (2022a). NTP Developmental and Reproductive Toxicity Technical Report on the Modified One-Generation Study of 2-Hydroxy-4-methoxybenzophenone (CASRN 131-57-7) Administered in Feed to Sprague Dawley (Hsd:Sprague Dawley SD) Rats with Prenatal and Reproductive Performance Assessments in F1 Offspring. Retrieved from <https://www.ncbi.nlm.nih.gov/books/NBK582008/>

National Toxicology Program – NTP (2022b). NTP Developmental and Reproductive Toxicity Technical Report on the Modified One-Generation Study of 2-Ethylhexyl p-Methoxycinnamate (CASRN 5466-77-3) Administered in Feed to Sprague Dawley (Hsd:Sprague Dawley SD) Rats with Prenatal, Reproductive Performance, and Subchronic Assessments in F1 Offspring. Retrieved from <https://www.ncbi.nlm.nih.gov/books/NBK581587/>

Odio M.R., et al. (1994). Evaluation of subchronic (13 week), reproductive, and *in vitro* genetic toxicity potential of 2-ethylhexyl-2-cyano-3,3-diphenyl acrylate (Octocrylene). *Fundam. Appl. Toxicol.* 22(3): 355-68.

Organisation for Economic Co-operation and Development – OECD (2019). Considerations When Assessing Children's Exposure to Chemicals from Products, Series on Testing and Assessment No. 310, ENV/JM/MONO (2019) 29. Retrieved from [https://one.oecd.org/document/ENV/JM/MONO\(2019\)29/en/pdf](https://one.oecd.org/document/ENV/JM/MONO(2019)29/en/pdf)

Philippat C., Mortamais M., Chevrier C., Petit C., Calafat A.M., Ye X., Silva M.J., Brambilla C., Pin I., Charles M-A., Cordier S., & Slama R. (2012). Exposure to phthalates and phenols during pregnancy and offspring size at birth, *Environ. Health Perspect.* 120: 464.

Pilli N.R., Narayanasamy S., Florian J., Zusterzeel R., Patel V., Strauss D.G. et al. (2021). Novel simultaneous method for the determination of avobenzone and oxybenzone in human plasma by UHPLC-MS/MS with phospholipid removal pretreatment: An application to a sunscreen clinical trial. *J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci.* 1169: 122615.

Potard G., Laugel C., Schaefer H., Marty J.P. (2000). The stripping technique: *in vitro* absorption and penetration of five UV filters on excised fresh human skin. *Skin Pharmacol. Appl. Skin. Physiol.* 13: 336–344.

Rehfeld A., Egeberg D. L., Almstrup K., Petersen J. H., Dissing S., & Skakkebæk N.E. (2018). EDC IMPACT: Chemical UV filters can affect human sperm function in a progesterone-like manner. *Endocrine Connections.* 7(1): 16-25.

Romita P., Foti C., Hansel K., & Stingeni L. (2018). Photo-contact allergy to octocrylene: a decreasing trend? *Contact Derm.* 78: 224–225.

Ruszkievicz, J. A., Pinkas, A., Ferrer, B., Peres, T. V., Tsatsakis, A., & Aschner, M. (2017). Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. *Toxicology reports*, 4, 245–259.

Santamaria, C. G., Meyer, N., Schumacher, A., Zenclussen, M. L., Teglia, C. M., Culzoni, M. J., Zenclussen, A. C., & Rodriguez, H. A. (2020). Dermal exposure to the UV filter benzophenone-3 during early pregnancy affects fetal growth and sex ratio of the progeny in mice. *Archives of toxicology*, 94(8), 2847–2859.

Sauce R., Pinto C.A.S.O., Velasco M.V.R., Rosado C., & Baby A.R. (2021). Ex vivo penetration analysis and anti-inflammatory efficacy of the association of ferulic acid and UV filters. *Eur. J. Pharm. Sci.* 156: 105578.

Scalia S., Battaglioli S., & Bianchi A. (2019). *In vivo* Human Skin Penetration of the UV Filter Ethylhexyl Triazole: Effect of Lipid Microparticle Encapsulation. *Skin Pharmacol. Physiol.* 32: 22–31.

Schlumpf M., Kypke K. *et al.* (2008). Endocrine Active UV Filters: Developmental Toxicity and Exposure Through Breast Milk, *CHIMIA International Journal for Chemistry* 62(5):345-351

Schlumpf M., Kypke K., Wittassek M. *et al.* (2010). Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs, and PCBs in human milk: correlation of UV filters with use of cosmetics. *Chemosphere*. 81: 1171–83.

Schneider S., *et al.* (2005). Octyl methoxycinnamate: Two generation reproduction toxicity in Wistar rats by dietary administration. *Food Chem. Toxicol.* 43: 1083-1092.

Scientific Committee on Consumer Products – SCCS (2006a). SCCP opinion on benzophenone-3, SCCP/1069/06. Retrieved from

https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_078.pdf

Scientific Committee on Consumer Products – SCCS (2006b). SCCP opinion on phenylbenzimidazole sulfonic acid and its salts, COLIPA S45. SCCO_o-079. Retrieved from https://ec.europa.eu/health/ph_risk/committees/04_sccp/sccp_opinions_en.htm

Scientific Committee on Consumer Products – SCCS (2008). Opinion on benzophenone-3, 16 December 2008. Retrieved from https://health.ec.europa.eu/system/files/2022-08/sccs_o_247.pdf

Scientific Committee on Consumer Products – SCCS (2016). The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation, 9th revision. Retrieved from

https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf

Scientific Committee on Consumer Products – SCCS (2020). Opinion on homosalate (CAS No 118-56-9, EC No 204-260-8), preliminary version of 27-28 October 2020, final version of 24-25 June 2021, SCCS/1622/20.SCCS/1622/20. Retrieved from https://health.ec.europa.eu/publications/homosalate_en

Scientific Committee on Consumer Products – SCCS (2021a). Opinion on octocrylene. SCCS/1627/21. Retrieved from https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_249.pdf

Scientific Committee on Consumer Products – SCCS (2021b). The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation, 11th revision. Retrieved from https://ec.europa.eu/health/system/files/2021-04/sccs_o_250_0.pdf

Scientific Committee on Consumer Products – SCCS (2021c). Opinion on Benzophenone-3 (CAS No 131-57-7, EC No 205-031-5), preliminary version of 15 December 2020, final version of 30-31 March 2021, SCCS/1625/20. Retrieved from https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_247.pdf

Scientific Committee on Consumer Products – SCCS (2021d). The SCCS Notes of Guidance for the testing of cosmetic ingredients and their safety evaluation, 11th revision, 30-31 March 2021, SCCS/1628/21. *Reg Toxicol Pharmacol.* 127, 105052.

Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers –SCCFP (2003). The SCCNFP's notes of guidance for the testing of cosmetic ingredients and their safety evaluation. 5th revision, 20 October 2023. SCCNFP/0690/03. Retrieved from

https://ec.europa.eu/health/ph_risk/committees/SCCP/documents/out242_en.pdf

Scientific Committee on Cosmetology – SCC (2000). Reports of the Scientific Committee on Cosmetology (ninth series). 2-ethylhexyl-4-methoxycinnamate (S28), pages 888-895.

Retrieved from

https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/scc_o_9.pdf

Scientific Committee on Toxicity, Ecotoxicity and the Environment – CSTEE (2001). Position paper on margins of safety (MOS) in human health risk assessment expressed at the 22nd CSTEE plenary meeting, Brussels, 06/07 March, 2001. Retrieved from

https://ec.europa.eu/health/scientific_committees/environmental_risks/opinions/sctee/sct_out_110_en.htm

Shin J.C., Lee E., An S., Jin S.H., Ha J., Choi W.J. et al. (2020). Benzophenone-3 and benzophenone-8 exhibit obesogenic activity via peroxisome proliferator-activated receptor γ pathway. *Toxicol. In Vitro* 67: 104886.

Stamatas G.N., et al. (2010). Infant skin microstructure assessed *in vivo* differs from adult skin in organisation and at the cellular level. *Pediatr Dermatol.* 27: 125-131.

Suh, S., Pham, C., Smith, J., & Mesinkovska, N. A. (2020). The banned sunscreen ingredients and their impact on human health: a systematic review. *Int J Dermatol.* 59(9), 1033–1042.

Therapeutic Goods Administration – TGA (2016). Australian Regulatory Guidelines for Sunscreens. Version 1.1, January 2016. Australian Government, Department of Health, TGA, Woden, 43 pp. Retrieved from <https://www.tga.gov.au/resources/resource/guidance/australian-regulatory-guidelines-sunscreens-args>

Therapeutic Goods Administration – TGA (2020). Therapeutic Goods (Permissible Ingredients) Determination No. 4. Retrieved from
https://www.legislation.gov.au/Details/F2020L01612/Html/Volume_4

Touitou E., & Godin B. (2008). Skin nonpenetrating sunscreens for cosmetic and pharmaceutical formulations. *Clinics Dermatol.* 26: 375–379.

United States Environmental Protection Agency – US EPA (2011). Exposure Factors Handbook 2011 Edition, EPA/600/R-09/052F, Washington DC. Retrieved from
<https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252>

United States Environmental Protection Agency – US EPA (2014). Child-Specific Exposure Scenarios Examples, EPA/600/R-14-217F, Washington DC. Retrieved from
<https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=262211>

US Food & Drug Administration – FDA (2018). 21 Code of Federal Regulations § 352.10.: 21 C.F.R. § 352.10. Retrieved from <https://www.ecfr.gov/current/title-21/chapter-I/subchapter-D/part-352>

US Food & Drug Administration – FDA (2019b). Sunscreen drug products for over-the-counter human use: proposed rule (2019). *Fed. Regist.* 84(38):6204–75. Retrieved from
<https://www.federalregister.gov/documents/2019/02/26/2019-03019/sunscreen-drug-products-for-over-the-counter-human-use>

US Food & Drug Administration – FDA (2019c). Food additives: threshold of regulation of ingredients used in food-contract articles: final rule. Retrieved from <https://www.govinfo.gov/content/pkg/FR-1995-07-17/pdf/95-17435.pdf>. Published July 17

US Food and Drug Administration – FDA (2019a). Maximal Usage Trials for Topically Applied Active Ingredients Being Considered for Inclusion in an Over-The - Counter Monograph: Study Elements and Considerations; Guidance for Industry. Retrieved from <https://www.fda.gov/media/125080/download>

Uter W., Lessmann H., Geier J., IVDK (2017). Is octocrylene a frequent contact allergen? *Contact Derm.* 77: 127–128.

Wang J., Pan L., Wu S., Lu L., Xu Y., Zhu, Y., Guo M., & Zhuang S. (2016). Recent Advances on Endocrine Disrupting Effects of UV Filters. *Int. J. Environ. Res. Pub. Health.* 13(8): 782.

Weiss V., Gobec M. & Jakopin Ž. (2023). In vitro investigation of immunomodulatory activities of selected UV-filters. *Food Chem. Toxicol.* 174: 113684.

Xu M., Zheng D., & Gong S. (2021). Effects of Low Concentration Benzophenone-3 Exposure on the sex ratio and offspring development of zebrafish (*Danio rerio*). *Bull. Environ. Contam. Toxicol.* 106: 740–746.

Yang *et al.* (2018). Homosalate aggravates the invasion of human trophoblast cells as well as regulates intracellular signaling pathways including PI3K/AKT and MAPK pathways. *Environ. Pollut.* 243: 1263–1273.

Yap F.H., Chua H.C., & Tait C.P. (2017). Active sunscreen ingredients in Australia. *Australas. J. Dermatol.* 58: e160–e170.

Yazar S., & Gökçe Y. (2018). Assessment of in vitro genotoxicity effect of homosalate in cosmetics. *Marmara Pharma. J.* 22: 436-442.

Yazar S., & Krtekin S.K. (2019). Assessment of the cytotoxicity and genotoxicity of homosalate in MCF-7. *S. J. Cosmetic Dermatol.* 19: 246-252.

Yener G., *et al.* (2003). Importance of using lipid microspheres as carriers for UV filters on the example octyl methoxy cinnamate. *Int. J. Pharmaceutics.* 258: 203-207.

Zhang X.Y., Jiao X.F., Wu D., Chen F., Ding Z.M., Wang Y.S. *et al.* (2022). Benzophenone-3 breaches mouse Sertoli cell barrier and alters F-actin organization without evoking apoptosis. *Environ. Toxicol.* 37: 28–40.

Therapeutic Goods Administration

PO Box 100 Woden ACT 2606 Australia
Email: info@tga.gov.au Phone: 1800 020 653 Fax: 02 6203 1605
Web: tga.gov.au

Reference/Publication #